Monte Carlo Modeling of the Graphene Moiré Structure on an Ir(111) Substrate
- Authors: Belim S.V.1, Tikhomirov I.V.1
-
Affiliations:
- Omsk State Technical University
- Issue: No 6 (2025)
- Pages: 62-70
- Section: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/376027
- DOI: https://doi.org/10.7868/S3034573125060097
- ID: 376027
Cite item
Abstract
The article simulates graphene moire patterns on an Ir(111) substrate. The difference in substrate and graphene periods leads to the formation of a moiré superstructure. This superstructure is periodic vertical deformations with hexagonal symmetry. The interaction between carbon atoms in graphene is significantly stronger than with substrate atoms. Therefore, graphene is not stretchable. Van der Waals forces determine the interaction between carbon atoms and substrate atoms. Lennard-Jones' potential models these forces. Surface potential replaces substrate exposure to carbon atoms. Our model calculates the surface potential in one unit cell and translates it using parallel transfer. The surface potential is the sum of the two-particle potentials for the atomic interaction. Comparison with experimental data and unification rules set Lennard-Jones potential parameters. The minimum energy determines the position of the graphene atoms. The simulation describes different orientations of the graphene crystal lattice relative to the substrate lattice. If the main directions of the two lattices coincide, then the period of the moire pattern has a maximum value of (2.54 ± 0.02) nm. This value is in good agreement with the experimental period 2.52 nm. The height of the graphene film above the substrate surface is calculated to be (0.330 ± 0.001) nm. Experimental measurements and ab initio calculations give a value (0.330 ± 0.005) nm. Rotation of the graphene relative to the principal directions of the substrate lattice results in a shorter moire period. A study of the dependence for the moire pattern period on the angle of rotation for the graphene crystal lattice relative to the substrate showed a nonlinear decreasing law.
About the authors
S. V. Belim
Omsk State Technical University
Email: shelim@mail.ru
Omsk, Russia
I. V. Tikhomirov
Omsk State Technical UniversityOmsk, Russia
References
- Geim A.K., Novoselov K.S. // Nature Mater. 2007. V. 6. № 3. P. 183. https://www.doi.org/10.1038/nmat1849
- Wintterlin J., Bocquet M.L. // Surf. Sci. 2009. V. 603. № 10–12. P. 1841. https://www.doi.org/10.1016/j.susc.2008.08.037
- Busse C., Lazić P., Djemour R., Coraux J., Gerber T., Atodiresei N., Caciuc V., Brako R., N′Diaye A. T., Blügel S., Zegenhagen J., Michely T. // Phys. Rev. Lett. 2011. V. 107. № 3. P. 036101. https://www.doi.org/10.1103/PhysRevLett.107.036101
- Ponomarenko L.A., Gorbachev R.V., Yu G.L., Elias D.C., Jalil R., Patel A.A., Mishchenko A., Mayorov A.S., Woods C.R., Wallbank J.R., MuchaKruczynski M., Piot B.A., Potemski M., Grigorieva I.V., Novoselov K.S., Guinea F., Fal′ko V.I., Geim A.K. // Nature. 2013. V. 497. P. 594. https://www.doi.org/10.1038/nature12187
- Wang B., Bocquet M.-L., Marchini S., Giunther S., Wintterlin J. // Phys. Chem. Chem. Phys. 2008. V. 10. № 24. P. 3530. https://www.doi.org/10.1039/B801785A
- Iannuzzi M., Kalichava I., Ma H., Leake S. J., Zhou H., Li G., Zhang Y., Bunk O., Gao H., Hutter J., Willmott P. R., Greber T. // Phys. Rev. B. 2013. V. 88. № 12. P. 125433. https://www.doi.org/10.1103/PhysRevB.88.125433
- Sun Z., Hämäläinen S. K., Sainio J., Lahtinen J., Vanmaekelbergh D., Liljeroth P. // Phys. Rev. B. 2011. V. 83. № 8. P. 081415. https://www.doi.org/10.1103/PhysRevB.83.081415
- Boneschanscher M.P., van der Lit J., Sun Zh., Swart I., Liljeroth P., Vanmaekelbergh D. // ACS Nano. 2012. V. 6. № 11. P. 10216. https://www.doi.org/10.1021/nn3040155
- Luican A., Li G., Reina A., Kong J., Nair R.R., Novoselov K.S., Geim A.K., Andrei E.Y. // Phys. Rev. Lett. 2011. V. 106. № 12. Р. 126802. https://www.doi.org/10.1103/PhysRevLett.106.126802
- Wang L., Yin S., Yang J., Dou S.X. // Small. 2023. V. 19. № 27. Р. 2300165. https://www.doi.org/10.1002/smil.202300165
- Xiao Y., Liu J., Fu L. // Matter. 2020. V. 3. № 4. Р. 1142. https://www.doi.org/10.1016/j.matt.2020.07.001
- Wang L., Yin S., Yang J., Dou S.X. // Phys. Rev. Lett. 2012. V. 108. № 5. Р. 056801. https://www.doi.org/10.1103/PhysRevLett.108.056801
- Kumar S., Himanshi, Prakash J., Verma A., Suman Jasrotia R., Kandwal A., Verma R., Kumar Godara S., Khan M.A.M., Alshehri S.M., Ahmed, J. // Catalysts. 2023. V. 13. № 1. Р. 111. https://www.doi.org/10.3390/catal13010111
- Barreto L., de Lima L. H., Martins D. C., Silva C., de Campos Ferreira R. C., Landers R., de Siervo Abner // J. Phys.: Condensed Matter. 2020. V. 33. № 10. Р. 105001. https://www.doi.org/10.1088/1361-648X/abceff
- Mousadakos D., Pivetta M., Brune H., Rusponi S. // New J. Phys. 2017. V. 19. № 12. Р. 123021. https://www.doi.org/10.1088/1367-2630/aa83e6
- Reidy K., Thomsen J. D., Lee H.Y., Zarubin V., Yu Y., Wang B., Pham T., Periwal P., Ross F.M. // Nano Lett. 2022. V. 22. № 14. Р. 5849. https://www.doi.org/10.1021/acs.nanolett.2c01682
- Liu X., Wang C.-Z., Hupalo M., Lin H.-Q., Ho K.-M., Tringides M.C. // Crystals. 2013. V. 3. № 1. Р. 79. https://www.doi.org/10.3390/cryst3010079
- N′Diaye A.T., Bleikamp S., Feibelman P. J., Michely T. // Phys. Rev. Lett. 2006. V. 97. № 21. Р. 215501. https://www.doi.org/10.1103/PhysRevLett.97.215501
- Kim D., Pandey J., Jeong J., Cho W., Lee S., Cho S., Yang H. // Chem. Rev. 2023. V. 123. № 19. Р. 11230. https://www.doi.org/10.1021/acs.chemrev.3c00132
- Fei Y., Liu J. // Adv. Sci. 2022. V. 9. № 19. Р. 2201000. https://www.doi.org/10.1002/advs.202201000
- Meng L., Wu R., Zhang L., Li L., Du S., Wang Y., Gao H.-J. // J. Phys.: Condensed Matter. 2012. V. 24. № 31. Р. 314214. https://www.doi.org/10.1088/0953-8984/24/31/314214
- Sun B., Ouyang W., Gu J., Wang C. J., Wang J., Mi L. // Mater. Chem. Phys. 2020. V. 253. Р. 123126. https://www.doi.org/10.1016/j.matchemphys.2020.123126
- Zhang L., Ding F. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 47. Р. 56674. https://www.doi.org/10.1021/acsami.lc18512
- Zeller P., Gunther S. // New J. Phys. 2014. V. 16. № 8. Р. 083028. https://www.doi.org/10.1088/1367-2630/16/8/083028
- Hermann K. // J. Phys.: Condensed Matter. 2012. V. 24. № 31. Р. 314210. https://www.doi.org/10.1088/0953-8984/24/31/314210
- Xue X., Wang L., Yu G. // Chem. Mater. 2021. V. 33. № 23. Р. 8960. https://www.doi.org/10.1021/acs.chemmater.lc01317
- Ren W., Lu S., Yu C., He J., Zhang Z., Chen J., Zhang G. // Appl. Phys. Rev. 2023. V. 10. № 4. Р. 041404. https://www.doi.org/10.1063/5.0159598
- Belim S.V., Tikhomirov I.V., Bychkov I.V. // Coatings. 2022. V. 12. № 6. Р. 853. https://www.doi.org/10.3390/coatings12060853
- Belim S.V., Tikhomirov I.V. // Physica Scripta. 2023. V. 98. Р. 105973. https://www.doi.org/10.1088/1402-4896/acface
- Belim S.V. // Materials. 2022. V. 15. № 7. Р. 2390. https://www.doi.org/10.3390/mai5072390
- Belim S.V., Bychkov I. V., Maltsev I., Kuzmin D. A., Shavrov V. G./ J. Magn. Magn. Mater. 2022. V. 541. № 1. Р. 168553. https://www.doi.org/10.1016/j.jmmm.2021.168553
- Lennard-Jones J.E. // Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1925. V. 109. № 752. Р. 584. https://www.doi.org/10.1098/rspa.1925.0147
- Boda D., Henderson D. // Molecular Physics. 2008. V. 106. № 20. Р. 2367. https://www.doi.org/10.1080/00268970802471137
- Tadmor E.B., Elliott R.S., Sethna J.P., Miller R.E., Becker C.A. // JOM. 2011. V. 63. № 7. Р. 17. https://www.doi.org/10.1007/s11837-011-0102-6
- Hämäläinen S.K., Boneschanscher M.P., Jacobse P.H., Swart I., Pussi K., Moritz W., Lahtinen J., Liljeroth P., Sainio J. // Phys. Rev. B. 2013. V. 88. № 20. Р. 201406. https://www.doi.org/10.1103/PhysRevB.88.201406
- Kolesnikov S.V., Sidorenkov A.V., Saletsky A.M. // JETP Lett. 2020. V. 111. Р. 116. https://www.doi.org/10.1134/S0021364020020083
- Omambac K.M., Hattab H., Brand C., Jnawali G., N′Diaye A. T., Coraux J., van Gastel R., Poelsema B., Michely T., Meyer zu Heringdorf F.-J., Horn-von Hoegen M. // Nano Lett. 2019. V. 19. № 7. Р. 4594. https://www.doi.org/10.1021/acs.nanolett.9b01565
Supplementary files


