Monte Carlo Modeling of the Graphene Moiré Structure on an Ir(111) Substrate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article simulates graphene moire patterns on an Ir(111) substrate. The difference in substrate and graphene periods leads to the formation of a moiré superstructure. This superstructure is periodic vertical deformations with hexagonal symmetry. The interaction between carbon atoms in graphene is significantly stronger than with substrate atoms. Therefore, graphene is not stretchable. Van der Waals forces determine the interaction between carbon atoms and substrate atoms. Lennard-Jones' potential models these forces. Surface potential replaces substrate exposure to carbon atoms. Our model calculates the surface potential in one unit cell and translates it using parallel transfer. The surface potential is the sum of the two-particle potentials for the atomic interaction. Comparison with experimental data and unification rules set Lennard-Jones potential parameters. The minimum energy determines the position of the graphene atoms. The simulation describes different orientations of the graphene crystal lattice relative to the substrate lattice. If the main directions of the two lattices coincide, then the period of the moire pattern has a maximum value of (2.54 ± 0.02) nm. This value is in good agreement with the experimental period 2.52 nm. The height of the graphene film above the substrate surface is calculated to be (0.330 ± 0.001) nm. Experimental measurements and ab initio calculations give a value (0.330 ± 0.005) nm. Rotation of the graphene relative to the principal directions of the substrate lattice results in a shorter moire period. A study of the dependence for the moire pattern period on the angle of rotation for the graphene crystal lattice relative to the substrate showed a nonlinear decreasing law.

About the authors

S. V. Belim

Omsk State Technical University

Email: shelim@mail.ru
Omsk, Russia

I. V. Tikhomirov

Omsk State Technical University

Omsk, Russia

References

  1. Geim A.K., Novoselov K.S. // Nature Mater. 2007. V. 6. № 3. P. 183. https://www.doi.org/10.1038/nmat1849
  2. Wintterlin J., Bocquet M.L. // Surf. Sci. 2009. V. 603. № 10–12. P. 1841. https://www.doi.org/10.1016/j.susc.2008.08.037
  3. Busse C., Lazić P., Djemour R., Coraux J., Gerber T., Atodiresei N., Caciuc V., Brako R., N′Diaye A. T., Blügel S., Zegenhagen J., Michely T. // Phys. Rev. Lett. 2011. V. 107. № 3. P. 036101. https://www.doi.org/10.1103/PhysRevLett.107.036101
  4. Ponomarenko L.A., Gorbachev R.V., Yu G.L., Elias D.C., Jalil R., Patel A.A., Mishchenko A., Mayorov A.S., Woods C.R., Wallbank J.R., MuchaKruczynski M., Piot B.A., Potemski M., Grigorieva I.V., Novoselov K.S., Guinea F., Fal′ko V.I., Geim A.K. // Nature. 2013. V. 497. P. 594. https://www.doi.org/10.1038/nature12187
  5. Wang B., Bocquet M.-L., Marchini S., Giunther S., Wintterlin J. // Phys. Chem. Chem. Phys. 2008. V. 10. № 24. P. 3530. https://www.doi.org/10.1039/B801785A
  6. Iannuzzi M., Kalichava I., Ma H., Leake S. J., Zhou H., Li G., Zhang Y., Bunk O., Gao H., Hutter J., Willmott P. R., Greber T. // Phys. Rev. B. 2013. V. 88. № 12. P. 125433. https://www.doi.org/10.1103/PhysRevB.88.125433
  7. Sun Z., Hämäläinen S. K., Sainio J., Lahtinen J., Vanmaekelbergh D., Liljeroth P. // Phys. Rev. B. 2011. V. 83. № 8. P. 081415. https://www.doi.org/10.1103/PhysRevB.83.081415
  8. Boneschanscher M.P., van der Lit J., Sun Zh., Swart I., Liljeroth P., Vanmaekelbergh D. // ACS Nano. 2012. V. 6. № 11. P. 10216. https://www.doi.org/10.1021/nn3040155
  9. Luican A., Li G., Reina A., Kong J., Nair R.R., Novoselov K.S., Geim A.K., Andrei E.Y. // Phys. Rev. Lett. 2011. V. 106. № 12. Р. 126802. https://www.doi.org/10.1103/PhysRevLett.106.126802
  10. Wang L., Yin S., Yang J., Dou S.X. // Small. 2023. V. 19. № 27. Р. 2300165. https://www.doi.org/10.1002/smil.202300165
  11. Xiao Y., Liu J., Fu L. // Matter. 2020. V. 3. № 4. Р. 1142. https://www.doi.org/10.1016/j.matt.2020.07.001
  12. Wang L., Yin S., Yang J., Dou S.X. // Phys. Rev. Lett. 2012. V. 108. № 5. Р. 056801. https://www.doi.org/10.1103/PhysRevLett.108.056801
  13. Kumar S., Himanshi, Prakash J., Verma A., Suman Jasrotia R., Kandwal A., Verma R., Kumar Godara S., Khan M.A.M., Alshehri S.M., Ahmed, J. // Catalysts. 2023. V. 13. № 1. Р. 111. https://www.doi.org/10.3390/catal13010111
  14. Barreto L., de Lima L. H., Martins D. C., Silva C., de Campos Ferreira R. C., Landers R., de Siervo Abner // J. Phys.: Condensed Matter. 2020. V. 33. № 10. Р. 105001. https://www.doi.org/10.1088/1361-648X/abceff
  15. Mousadakos D., Pivetta M., Brune H., Rusponi S. // New J. Phys. 2017. V. 19. № 12. Р. 123021. https://www.doi.org/10.1088/1367-2630/aa83e6
  16. Reidy K., Thomsen J. D., Lee H.Y., Zarubin V., Yu Y., Wang B., Pham T., Periwal P., Ross F.M. // Nano Lett. 2022. V. 22. № 14. Р. 5849. https://www.doi.org/10.1021/acs.nanolett.2c01682
  17. Liu X., Wang C.-Z., Hupalo M., Lin H.-Q., Ho K.-M., Tringides M.C. // Crystals. 2013. V. 3. № 1. Р. 79. https://www.doi.org/10.3390/cryst3010079
  18. N′Diaye A.T., Bleikamp S., Feibelman P. J., Michely T. // Phys. Rev. Lett. 2006. V. 97. № 21. Р. 215501. https://www.doi.org/10.1103/PhysRevLett.97.215501
  19. Kim D., Pandey J., Jeong J., Cho W., Lee S., Cho S., Yang H. // Chem. Rev. 2023. V. 123. № 19. Р. 11230. https://www.doi.org/10.1021/acs.chemrev.3c00132
  20. Fei Y., Liu J. // Adv. Sci. 2022. V. 9. № 19. Р. 2201000. https://www.doi.org/10.1002/advs.202201000
  21. Meng L., Wu R., Zhang L., Li L., Du S., Wang Y., Gao H.-J. // J. Phys.: Condensed Matter. 2012. V. 24. № 31. Р. 314214. https://www.doi.org/10.1088/0953-8984/24/31/314214
  22. Sun B., Ouyang W., Gu J., Wang C. J., Wang J., Mi L. // Mater. Chem. Phys. 2020. V. 253. Р. 123126. https://www.doi.org/10.1016/j.matchemphys.2020.123126
  23. Zhang L., Ding F. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 47. Р. 56674. https://www.doi.org/10.1021/acsami.lc18512
  24. Zeller P., Gunther S. // New J. Phys. 2014. V. 16. № 8. Р. 083028. https://www.doi.org/10.1088/1367-2630/16/8/083028
  25. Hermann K. // J. Phys.: Condensed Matter. 2012. V. 24. № 31. Р. 314210. https://www.doi.org/10.1088/0953-8984/24/31/314210
  26. Xue X., Wang L., Yu G. // Chem. Mater. 2021. V. 33. № 23. Р. 8960. https://www.doi.org/10.1021/acs.chemmater.lc01317
  27. Ren W., Lu S., Yu C., He J., Zhang Z., Chen J., Zhang G. // Appl. Phys. Rev. 2023. V. 10. № 4. Р. 041404. https://www.doi.org/10.1063/5.0159598
  28. Belim S.V., Tikhomirov I.V., Bychkov I.V. // Coatings. 2022. V. 12. № 6. Р. 853. https://www.doi.org/10.3390/coatings12060853
  29. Belim S.V., Tikhomirov I.V. // Physica Scripta. 2023. V. 98. Р. 105973. https://www.doi.org/10.1088/1402-4896/acface
  30. Belim S.V. // Materials. 2022. V. 15. № 7. Р. 2390. https://www.doi.org/10.3390/mai5072390
  31. Belim S.V., Bychkov I. V., Maltsev I., Kuzmin D. A., Shavrov V. G./ J. Magn. Magn. Mater. 2022. V. 541. № 1. Р. 168553. https://www.doi.org/10.1016/j.jmmm.2021.168553
  32. Lennard-Jones J.E. // Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1925. V. 109. № 752. Р. 584. https://www.doi.org/10.1098/rspa.1925.0147
  33. Boda D., Henderson D. // Molecular Physics. 2008. V. 106. № 20. Р. 2367. https://www.doi.org/10.1080/00268970802471137
  34. Tadmor E.B., Elliott R.S., Sethna J.P., Miller R.E., Becker C.A. // JOM. 2011. V. 63. № 7. Р. 17. https://www.doi.org/10.1007/s11837-011-0102-6
  35. Hämäläinen S.K., Boneschanscher M.P., Jacobse P.H., Swart I., Pussi K., Moritz W., Lahtinen J., Liljeroth P., Sainio J. // Phys. Rev. B. 2013. V. 88. № 20. Р. 201406. https://www.doi.org/10.1103/PhysRevB.88.201406
  36. Kolesnikov S.V., Sidorenkov A.V., Saletsky A.M. // JETP Lett. 2020. V. 111. Р. 116. https://www.doi.org/10.1134/S0021364020020083
  37. Omambac K.M., Hattab H., Brand C., Jnawali G., N′Diaye A. T., Coraux J., van Gastel R., Poelsema B., Michely T., Meyer zu Heringdorf F.-J., Horn-von Hoegen M. // Nano Lett. 2019. V. 19. № 7. Р. 4594. https://www.doi.org/10.1021/acs.nanolett.9b01565

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).