Influence of Solar Energetic Particles on Photometric Characteristics of the CCD Detector of the LASCO/C3 Space Telescope

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The data from the LASCO/C3 space telescope onboard the SOHO space observatory are used to investigate the effect of solar energetic particles on the telescope's CCD detector. A special feature of the instrument is that it is located at the L1 Lagrange point of the Sun–Earth system at a distance of 1.5 million km from the planet and is not protected from charged particles by the Earth's magnetic field. In the period from 2018 to 2024, a decrease in the instrument's sensitivity was detected at a rate of 0.94 ± 0.03% per year and an increase in the signal dispersion at a rate of 4.9 ± 0.1% per year. The main probable reason is an uneven decrease in the photometric sensitivity of the detector in different pixels. The effect of charged particles produced during large solar flares on the sensitivity of CCD detector was also studied. According to the data obtained, the influence of individual flares on the detector's sensitivity is insignificant and cannot be detected within the measurement error. However, this effect can accumulate, resulting in significant changes in CCD sensitivity over several years or more.

About the authors

S. A. Bogachev

Space Research Institute RAS

Email: bogachev.sergey@gmail.com
Moscow, Russia

S. V. Kuzin

Space Research Institute RAS

Moscow, Russia

A. S. Kirichenko

Space Research Institute RAS

Moscow, Russia

I. P. Loboda

Space Research Institute RAS

Moscow, Russia

A. A. Reva

Space Research Institute RAS

Moscow, Russia

A. V. Trifonov

Space Research Institute RAS

Moscow, Russia

References

  1. Lemen J.R., Title A.M., Akin D.J. et al. // Sol. Phys. 2012. V. 275. P. 17. https://doi.org/10.1007/s11207-011-9776-8
  2. Kuzin S.V., Bogachev S.A., Zhitnik I.A., Pertsov A.A. Ignatiev A.P., Mitrofanov A.M., Slemzin V.A., Shestov S.V., Sukhodrev N.K., Bugaenko O.I. // Adv. Space Res. 2009. V. 43. № 6. P. 1001. https://doi.org/10.1016/j.asr.2008.10.021
  3. Ryan J.M., Lockwood J.A., Debrunner H. // Space Sc. Rev. 2000. V. 93. № 1. P. 35. https://doi.org/10.1023/A:1026580008909
  4. Gendreau K., Bautz M., Ricker G. // Nucl. Instrum. Methods Phys. Res. A. 1993. V. 335. № 1–2. P. 318. https://doi.org/10.1016/0168-9002(93)90287-R
  5. Young P.R., Viall N.M., Kirk M.S., Mason E.I., Chitta L.P. // Sol. Phys. 2021. V. 296. № 12. P. 181. https://doi.org/10.1007/s11207-021-01929-8
  6. Didkovsky L.V., Judge D.L., Jones A.R., Rhodes Jr E.J., Gurman J.B. // Astronom. Nachrichten: Astronom. Notes. 2006. V. 327. № 4. P. 314. https://doi.org/10.1002/asna.200510529
  7. WWalsh B.M., Kuntz K.D., Collier M.R., Sibeck D.G., Snowden S.L., Thomas N.E. // Space Weather. 2014. V. 12. № 6. P. 387. https://doi.org/10.1002/2014SW001046
  8. Prigozhin G.Y., Kissel S.E., Bautz M.W., Grant C., LaMarr B., Foster R.F., Ricker Jr G.R. // X-ray and Gamma-Ray Instrumentation for Astronomy XI. Proc. SPIE. 2000. V. 4140. P. 123. https://doi.org/10.1117/12.409106
  9. Lo D.H., Srour J.R. // IEEE Trans. Nucl. Sci. 2003. V. 50. № 6. P. 2018. https://doi.org/10.1109/TNS.2003.820735
  10. Ambrosi R.M., Holland A.D., Smith D.R., Hutchinson I.B., Denby M. // Planetary Space Sci. 2005. V. 53. № 14–15. P. 1449. https://doi.org/10.1016/j.pss.2005.10.004
  11. Shen Z.N., Qin G. // J. Geophys. Res.: Space Phys. 2016. V. 121. № 11. P. 10712. https://doi.org/10.1002/2016JA023376
  12. Kasapis S., Thompson B.J., Rodriguez J.V., Attie R., Cucho-Padin G., Da Silva D., Jin M., Pesnell W.D. // Space Weather. 2023. V. 21. № 3. P. e2022SW003310. https://doi.org/10.1029/2022SW003310
  13. St. Cyr O.C., Posner A., Burkepile J.T. // Space Weather. 2017. V. 15. № 1. P. 240. https://doi.org/10.1002/2016SW001545
  14. Li F., Nathan A. CCD Image Sensors in Deep-Ultraviolet: Degradation Behavior and Damage Mechanisms. Springer Sci. Business Media, 2005. 231 p. https://doi.org/10.1007/b139047
  15. Brueckner G.E., Howard R.A., Koomen M.J., Korendyke C.M., Michels D.J., Moses J.D., Socker D.G., Dere K.P., Lamy P.L., Llebaria A., Bout M.V., Schwenn R., Simnett G.M., Bedford D.K., Eyles C.J. // The SOHO Mission / Ed. Fleck B. et al. Dordrecht: Springer, 1995. P. 357. https://doi.org/10.1007/978-94-009-0191-9_10
  16. Domingo V., Fleck B., Poland A.I. // Sol. Phys. 1995. V. 162. P. 1. https://doi.org/10.1007/BF00733425
  17. Koutchmy S., Tavabi E., Urtado O. // Mon. Not. R. Astronom. Soc. 2018. V. 478. № 1. P. 1265. https://doi.org/10.1093/mnras/sty1205
  18. Brekke P., Chaloupy M., Fleck B., Haugan S.V., van Overbeek T., Schweitzer H. // Effects of Space Weather on Technology Infrastructure. Dordrecht: Springer, 2005. P. 109. https://doi.org/10.1007/1-4020-2754-0_6
  19. https://soho.nascom.nasa.gov/data/REPROCESSING/Completed/ (дата обращения: 01.10.2024).
  20. Fruhlich C. // Surv. Geophys. 2012. V. 33. P. 453. https://doi.org/10.1007/s10712-011-9168-5
  21. NOAA Space Weather Prediction Center (2024) Solar Proton Events Affecting the Earth Environment. https://www.ngdc.noaa.gov/stp/space-weather/interplanetary-data/solar-proton-events/SEP%20page%20code.html. Cited 01 October 2024.
  22. Thermisen A.F., Morrill J.S., Howard R.A., Wang D. // Sol. Phys. 2006. V. 233. P. 155. https://doi.org/10.1007/s11207-006-2047-4
  23. Gardus B., Lamy P., Lebaria A. // Sol. Phys. 2013. V. 283. P. 667. https://doi.org/10.1007/s11207-013-0240-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).