On Clustering in Real Cottrell Nanosegregations in Metallic Materials
- 作者: Nechaev Y.S1, Shurygina N.A1,2, Cheretaeva A.O3, Filippova V.P1
-
隶属关系:
- Scientific Center of Metals Science and Physics, Bardin Central Research Institute for Ferrous Metallurgy
- Russian Technological University MIREA
- Institute of Progressive Technologies, Togliatti State University
- 期: 编号 5 (2025)
- 页面: 65-72
- 栏目: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/356813
- DOI: https://doi.org/10.7868/S3034573125050083
- ID: 356813
如何引用文章
详细
By analyzing some known data of 3D atomic force microscopy for metallic materials and a number of other theoretical and experimental results, including data on the "dislocation" dissolution of cementite in pearlitic and martensitic steels, clustering in real Cottrell "atmospheres" (nanosegregations) is considered and their characteristics (including the number of impurity atoms per dislocation of atomic length) are determined, which differ significantly from the classical theoretical models. In particular, Cottrell boron nanosegregations on edge dislocations in an ordered intermetallic compound FeAl containing 40 at. % Al and 0.04 at. % B, as well as Cottrell carbon nanosegregations on screw dislocations in martensitic steel are considered. The presence of Fe3B and Fe3C type clustering in such nanosegregations, which is not taken into account in the framework of the classical models of Cottrell's "atmospheres" ("clouds"), is shown. It is shown that in metallic materials (FeAl–B, Fe–C, Al–Fe, Pd–H) in real "atmospheres" (nanosegregations) on dislocations a certain clustering takes place (including the formation of bordde-like, carbide-like, intermetallic-like and hydride-like structures), which differs from the classical theoretical models of Cottrell's "atmospheres". In particular, the methodology for determining the impurity diffusion coefficient in the areas of nanosegregations on dislocations in metallic materials is considered (using the Pd–H, Al–Fe, Fe–C systems as an example).
作者简介
Yu. Nechaev
Scientific Center of Metals Science and Physics, Bardin Central Research Institute for Ferrous Metallurgy
编辑信件的主要联系方式.
Email: yuri1939@inbox.ru
Moscow, Russia
N. Shurygina
Scientific Center of Metals Science and Physics, Bardin Central Research Institute for Ferrous Metallurgy; Russian Technological University MIREA
Email: yuri1939@inbox.ru
Moscow, Russia; Moscow, Russia
A. Cheretaeva
Institute of Progressive Technologies, Togliatti State University
Email: yuri1939@inbox.ru
Togliatti, Russia
V. Filippova
Scientific Center of Metals Science and Physics, Bardin Central Research Institute for Ferrous Metallurgy
Email: yuri1939@inbox.ru
Moscow, Russia
参考
- Marquis E. A., Hyde J. M. // Mater. Sci. Eng. R. 2010. V. 69. P. 37. https://doi.org/10.1016/j.mser.2010.05.001
- Pareige P., Cadel E., Sauvage X., Deconthout B., Blavette D., Mangelinck D. // Int. J. Nanotechnol. 2008. V. 5. P. 592. https://doi.org/10.1504/IJNT.2008.018684
- Blavette D., Duguay S. // Eur. Phys. J. Appl. Phys. 2014. V. 68. P. 10101. https://doi.org/10.1051/epjap/2014140060
- Herbig M., Choi P., Raabe D. // Ultramicroscopy. 2015. V. 153. P. 32. http://dx.doi.org/10.1016/j.ultramic.2015.02.003
- Blavette D., Cadel E., Fraczkiewicz A., Menand A. // Science. 1999. V. 286. № 5448. P. 2317. https://doi.org/10.1126/science.286.5448.2317
- Cadel E., Lemarchand D., Gay A.-S., Fraczkiewicz A., Blavette D. // Scr. Mater. 1999. V. 41. № 4. P. 421. https://doi.org/10.1016/S1359-6462(99)00106-2
- Calonne O., Fraczkiewicz A., Louchet F. // Scr. Mater. 2000. V. 43. № 1. P. 69. https://doi.org/10.1016/S1359-6462(00)00367-5
- Cadel E., Launois S., Fraczkiewicz A., Blavette D. // Philos. Mag. Lett. 2000. V. 80. № 11. P. 735. https://doi.org/10.1080/09500830050192945
- Blavette D., Fraczkiewicz A., Cadel E. // J. Phys. IV France. 2000. V. 10. № PR6. P. Pr6-111. https://doi.org/10.1051/jp4:2000619
- Cadel E., Fraczkiewicz A., Blavette D. // Mater. Sci. Eng. A. 2001. V. 309–310. P. 32. https://doi.org/10.1016/S0921-5093(00)01688-9
- Cottrell A.H., Bilby B.A. // Proc. Phys. Soc. A. 1949. V. 62 (1). № 308. P. 49.
- Cottrell A.H. Dislocations and Plastic Flow in Crystals. Oxford: Clarendon, 1953. 134 p.
- Hirth J.P., Lothe J. Theory of Dislocations. New York: McGraw-Hill, 1968. 780 p.
- Wilde J., Cerezo A., Smith G.D.W. // Scr. Mater. 2000. V. 43. № 1. P. 39. https://doi.org/10.1016/S1359-6462(00)00361-4
- Kahn R.W. The Coming of Materials Science. Pergamon Materials Series. Cambridge: Cambridge Univ. Press, 2001. 568 p.
- Baauen P.S., Добаткин С.В., Sauvage X. // Тр. Международный. “Нанотехнологии и наноматериалы в металлургии”. Москва, 26–27 марта 2008 г. (ГНЦ РФ ФГУП “ЦНИИчермет им. И.П. Бардина”).
- Nechaev Y.S., Öchsner A. // Defect Diffus. Forum. 2019. V. 391. P. 246. https://doi.org/10.4028/www.scientific.net/DDF.391.246
- Нечаев Ю.С. // УФН. 2008. Т. 178. № 7. С. 709. https://doi.org/10.1070/PU2008v051n07ABEH006570
- Нечаев Ю.С. // УФН. 2011. Т. 181. № 5. С. 483. https://doi.org/10.3367/UFNe.0181.201105b.0483
- Pokatilov V.S., Pokatilov V.V., Dyakonova N.B. // Bull. Russ. Acad. Sci.: Phys. 2007. V. 71. № 11. P. 1589. https://doi.org/10.3103/S1062873807110366
- Vincze I., Boudreaux D.S., Tegze M. // Phys. Rev. B. 1979. V. 19. № 10. P. 4896. https://doi.org/10.1103/PhysRevB.19.4896
- Pokatilov V.S., Dyakonova N.B. // Hyperfine Interaction. 1990. V. 59. № 1–4. P. 525. https://doi.org/10.1007/BF02401288
- Pokatilov V.S. // Phys. Solid State. 2007. V. 49. № 12. P. 2217. https://doi.org/10.1134/S1063783407120013
- Zhang Y.D., Budnick J.I., Ford J.C., Hines W.A. // J. Magn. Magn. Mater. 1991. V. 100. № 1–3. P. 13.
- Friedel J. Dislocations. Oxford: Pergamon Press, Addison-Wesley, 1964. 491 p.
- Нечаев Ю.С. // Альтернативная энергетика и экология. 2007. Т. 11 (55). С. 108.
- Счастливец В.М., Яковлева Н.Л., Мирзеев Д.А., Табашникова Т.Н. // Тр. науч.-практ. семинара “Проблемы старения сталей магистральных трубопроводов”. Нижний Новгород, 23–25 января 2006 г. С. 68.
- Шпиренко М.А. Прочность сплавов. Дефекты решетки. М.: Изд-во МИСиС, 1999. 384 с.
- Danok F., Julien D., Sauvage X., Copreaux J. // Mater. Sci. Eng. A. 1998. V. 250. № 1. P. 8. https://doi.org/10.1016/s0921-5093(98)00747-3
- Sauvage X., Copreaux J., Danok F., Blavette D. // Philos. Mag. A. 2000. V. 80. № 4. P. 781. https://doi.org/10.1080/01418610008212082
- Ivanisenko Yu., Lojkowski W., Valiev R.Z., Fecht H.-J. // Acta Mater. 2003. V. 51. № 18. P. 5555. https://doi.org/10.1016/S1359-6454(03)00419-1
- Sauvage X., Dacosta G., Valiev R.Z. // Ultrafine Grained Materials III. Warrendale: TMS, 2004. P. 31.
- Balak J., Sauvage X., Lee D.-L., Lee C.-Y., Pareige P. // Adv. Mater. Res. 2007. V. 24–25. P. 45.
- Gridnev V.N., Gavrilyuk V.G. // Phys. Met. 1982. V. 4. P. 531.
- Gridnev V.N., Gavrilyuk V.G., Dekhtyar I.Ya., Meshkov Yu.Ya., Nizin P.S., Prokopenko V.G. // Phys. Stat. Sol. A. 1972. V. 14. № 2. P. 689. https://doi.org/10.1515/9783112496527-036
- Gavrilyuk V.G. // Scr. Mater. 2001. V. 45. № 12. P. 1469. https://doi.org/10.1016/S1359-6462(01)01185-X
- Gavrilyuk V.G. // Mater. Sci. Eng. A. 2003. V. 345. № 1–2. P. 81. https://doi.org/10.1016/S0921-5093(02)00358-1
- Sauvage X., Ivanisenko Y. // J. Mater. Sci. 2007. V. 42. P. 1615. https://doi.org/10.1007/s10853-006-0750-z
- Nechaev Yu.S. // Defect Diffus. Forum. 2006. V. 251–252. P. 111. https://doi.org/10.4028/www.scientific.net/DDF.251-252.111
- Nechaev Yu.S. // Solid State Phenomena. 2008. V. 138. P. 91. https://doi.org/10.4028/www.scientific.net/SSP.138.91
- Нечаев Ю.С. // УФН. 2001. Т. 171. № 11. С. 1251. https://doi.org/10.3367/UFNr.0171.200111e.1251
补充文件

