Modification of the Surface Structure of Carbon-Based Materials under Ion Irradiation
- Authors: Begrambekov L.B.1, Puntakov N.A.1, Grunin A.V.2
-
Affiliations:
- National Research Nuclear University MEPhI
- N.A. Dollezhal Research and Development Institute of Power Engineering, Joint Stock Company
- Issue: No 1 (2025)
- Pages: 54-63
- Section: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/294462
- DOI: https://doi.org/10.31857/S1028096025010084
- EDN: https://elibrary.ru/ABBLHZ
- ID: 294462
Cite item
Abstract
Research on the influence of a high intensity (by the order of magnitude of 1024 ion/(m2s)) deuterium ion beam on the surface of anisotropic carbon-based materials — pyrolytic graphite and carbon fiber composite with polyacrylonitrile fiber onion-skin fibers — was conducted in this work. Characteristics of material modification is discussed, and the results are compared to the results obtained in the works conducted by other authors. It is shown that the fragmentation of surface-level graphene layers during irradiation by high intensity deuterium ion flux and the corresponding compressive stress leads to the bending of the exfoliated surface layers and the formation of the hill system-like structure. Further irradiation leads to a reverse process of the formation of graphene layers oriented parallel to surface on the slopes of the hills, and crystals with the similarly oriented layers on the top of the hills. During the irradiation of onion-skin type carbon fibers from the side, folds perpendicular to the axis of the fiber were formed on them when the ions implanted into the surface induced compressive stress that led to fragmentation and bending of the surface layers, and the degree of structural destruction of the lattice was sufficient enough for the re-emission of ions to occur. Folds that are parallel of the axis of the fiber were formed in cases where maximum stress was formed at a certain depth of the material due to high ion path length, and the degree of destruction was insufficient for the re-emission of ions. In this particular case, the surface deformation mechanism is similar to that of blistering. Ion irradiation of the fibers’ ends led to them protruding from the composite matrix and recrystallization of exposed parts, with the graphene layers of crystals oriented perpendicular to the axis of the fiber. The results of this work allow to conclude that irradiation of the carbon-based structures leads to transformation into a formation that is perpendicular to the original independently of the original’s orientation or the direction of the ion beam.
About the authors
L. B. Begrambekov
National Research Nuclear University MEPhI
Email: np9293@my.bristol.ac.uk
Russian Federation, Moscow, 115409
N. A. Puntakov
National Research Nuclear University MEPhI
Author for correspondence.
Email: np9293@my.bristol.ac.uk
Russian Federation, Moscow, 115409
A. V. Grunin
N.A. Dollezhal Research and Development Institute of Power Engineering, Joint Stock Company
Email: np9293@my.bristol.ac.uk
Russian Federation, Moscow, 101000
References
- Begrambekov L., Brosset C., Bucalossi J., Delchambre E., Gunn J.P., Grisolia C., Lipa M., Loarer T., Mitteau R., Moner-Garbet P., Pascal J.-Y., Shigin P., Titov N., Tsitrone E., Vergazov S., Zakharov A. // J. Nucl. Mater. 2007. V. 363–365. P. 1148. https://www.doi.org/10.1016/j.jnucmat.2007.01.147
- Lipa M., Chappuis Ph., Chaumat G., Guilhem D., Mitteau R., Ploechl L. // Fusion Technology. 1996. P. 439. https://www.doi.org/10.1016/B978-0-444-82762-3.50080-X
- Беграмбеков Л.Б., Пунтаков Н.А., Айрапетов А.А., Грунин А.В., Довганюк С.С., Захаров А.М., Саввин Н.О., Грашин С.А., Архипов И.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 12. С. 101. https://www.doi.org/10.31857/S1028096023080058
- Минаев В.Б., Минеев А.Б., Сахаров Н.В., Петров Ю.В., Бахарев Н.Н., Бондарчук Э.Н., Бондарь А.В., Варфоломеев В.И., Воронова А.А., Гусев В.К., Дьяченко В.В., Кавин А.А., Кедров И.В., Конин А.Ю., Кудрявцева А.М., Курскиев Г.С., Лабусов А.Н., Мирошников И.В., Родин И.Ю., Танчук В.Н., Трофимов В.А., Филатов О.Г., Щеголев П.Б. // Физика плазмы. 2023. Т. 49. № 12. С. 1375. https://www.doi.org/10.31857/S0367292123600851
- Андрианова Н.Н., Борисов А.М., Машкова Е.С., Шульга В.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 4. С. 51. https://www.doi.org/10.7868/S0207352816040041
- Андрианова Н.Н., Борисов А.М., Виргильев Ю.С., Машкова Е.С., Севостьянова В.С., Шульга В.И. // Поверхность. Рентгенов., синхротр. и нейтрон. исслед. 2013. № 3. С. 103. https://www.doi.org/10.7868/S0207352813030050
- Kaguchi Y., Meguro T., Hida A., Takai H., Maeda K., Yamamoto Y., Aoyagi Y. // Nucl. Instrum. Methods Phys. B. 2003. V. 206. P. 202. https://www.doi.org/10.1016/S0168-583X(03)00727-4
- Hechtl E., Bohdansky J. // J. Nucl. Mater. 1986. V. 141–143. P. 139. https://www.doi.org/10.1016/S0022-3115(86)80023-X
- Jeong S.H., Lim D.C., Boo J.-H., Lee S.B., Hwang H.N., Hwang C.C., Kim Y.D. // Appl. Catalysis A: General. 2007. V. 320. P. 152. https://www.doi.org/10.1016/j.apcata.2007.01.026
- Andrianova N., Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Makunin A.V., Vysotina E.A. // Vacuum. 2022. V. 205. P. 111477. https://www.doi.org/10.1016/j.vacuum.2022.111477
- Jimbou R., Nakamura K., Bandourko V., Okumura Y., Akiba M. // J. Nucl. Mater. 1998. V. 258–263. P. 724. https://www.doi.org/10.1016/S0022-3115(98)00252-9
- Андрианова Н.Н., Аникин В.А., Борисов А.М., Казаков В.А., Машкова Е.С., Овчинников М.А., Савушкина С.В. // Известия РАН. Серия физическая. 2018. Т. 82. № 2. P. 140. https://www.doi.org/10.7868/S0367676518020023
- Андрианова Н.Н., Борисов А.М., Казаков В.А., Макунин А.В., Машкова Е.С., Овчинникова М.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 3. C. 20. https://www.doi.org/10.31857/S1028096020030036
- Авилкина В.С., Андрианова Н.Н., Борисов А.М., Борисов В.В., Машкова Е.С., Тимофеев М.А., Виргильев Ю.С. // Прикладная физика. 2010. № 3. C. 42.
- Azizov E., Barsuk V., Begrambekov L., Buzhinsky O., Evsin A., Gordeev A., Grunin A., Klimov N., Kurnaev V., Mazul I., Otroshchenko V., Putric A., Sadovskiy Ya., Shigin P., Vergazov S., Zakharov A. // J. Nucl. Mater. 2015. V. 463. P. 792. https://www.doi.org/10.1016/j.jnucmat.2015.01.015
- Andrianova N.N., Borisov A.M., Vorobyeva E.A., Ovchinnikov M.A., Sleptsov V.V., Tsyrkov R.A. // Phys. Atomic Nuclei. 2023. V. 86. Iss. 10. P. 2191. https://www.doi.org/10.1016/j.vacuum.2021.110177
- James F. Ziegler, M.D. Ziegler, Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. Iss. 11–12. P. 1818. https://www.doi.org/10.1016/j.nimb.2010.02.091
- Мартыненко Ю.В. Теория блистеринга. Москва: ИАЭ им. И.В. Курчатова, 1979. 41 c.
- Гусева М.И., Мартыненко Ю.В. // Успехи физических наук. 1981. Т. 135. Вып. 4. P. 671. https://www.doi.org/10.1070/PU1981v024n12 ABEH004758
- Беграмбеков Л.Б. Процессы в твердом теле под действием ионного и плазменного облучения. Учебное пособие. Москва: МИФИ, 2008. 196 с.
Supplementary files
