Modification of the Surface Structure of Carbon-Based Materials under Ion Irradiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Research on the influence of a high intensity (by the order of magnitude of 1024 ion/(m2s)) deuterium ion beam on the surface of anisotropic carbon-based materials — pyrolytic graphite and carbon fiber composite with polyacrylonitrile fiber onion-skin fiberswas conducted in this work. Characteristics of material modification is discussed, and the results are compared to the results obtained in the works conducted by other authors. It is shown that the fragmentation of surface-level graphene layers during irradiation by high intensity deuterium ion flux and the corresponding compressive stress leads to the bending of the exfoliated surface layers and the formation of the hill system-like structure. Further irradiation leads to a reverse process of the formation of graphene layers oriented parallel to surface on the slopes of the hills, and crystals with the similarly oriented layers on the top of the hills. During the irradiation of onion-skin type carbon fibers from the side, folds perpendicular to the axis of the fiber were formed on them when the ions implanted into the surface induced compressive stress that led to fragmentation and bending of the surface layers, and the degree of structural destruction of the lattice was sufficient enough for the re-emission of ions to occur. Folds that are parallel of the axis of the fiber were formed in cases where maximum stress was formed at a certain depth of the material due to high ion path length, and the degree of destruction was insufficient for the re-emission of ions. In this particular case, the surface deformation mechanism is similar to that of blistering. Ion irradiation of the fibers’ ends led to them protruding from the composite matrix and recrystallization of exposed parts, with the graphene layers of crystals oriented perpendicular to the axis of the fiber. The results of this work allow to conclude that irradiation of the carbon-based structures leads to transformation into a formation that is perpendicular to the original independently of the original’s orientation or the direction of the ion beam.

About the authors

L. B. Begrambekov

National Research Nuclear University MEPhI

Email: np9293@my.bristol.ac.uk
Russian Federation, Moscow, 115409

N. A. Puntakov

National Research Nuclear University MEPhI

Author for correspondence.
Email: np9293@my.bristol.ac.uk
Russian Federation, Moscow, 115409

A. V. Grunin

N.A. Dollezhal Research and Development Institute of Power Engineering, Joint Stock Company

Email: np9293@my.bristol.ac.uk
Russian Federation, Moscow, 101000

References

  1. Begrambekov L., Brosset C., Bucalossi J., Delchambre E., Gunn J.P., Grisolia C., Lipa M., Loarer T., Mitteau R., Moner-Garbet P., Pascal J.-Y., Shigin P., Titov N., Tsitrone E., Vergazov S., Zakharov A. // J. Nucl. Mater. 2007. V. 363–365. P. 1148. https://www.doi.org/10.1016/j.jnucmat.2007.01.147
  2. Lipa M., Chappuis Ph., Chaumat G., Guilhem D., Mitteau R., Ploechl L. // Fusion Technology. 1996. P. 439. https://www.doi.org/10.1016/B978-0-444-82762-3.50080-X
  3. Беграмбеков Л.Б., Пунтаков Н.А., Айрапетов А.А., Грунин А.В., Довганюк С.С., Захаров А.М., Саввин Н.О., Грашин С.А., Архипов И.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 12. С. 101. https://www.doi.org/10.31857/S1028096023080058
  4. Минаев В.Б., Минеев А.Б., Сахаров Н.В., Петров Ю.В., Бахарев Н.Н., Бондарчук Э.Н., Бондарь А.В., Варфоломеев В.И., Воронова А.А., Гусев В.К., Дьяченко В.В., Кавин А.А., Кедров И.В., Конин А.Ю., Кудрявцева А.М., Курскиев Г.С., Лабусов А.Н., Мирошников И.В., Родин И.Ю., Танчук В.Н., Трофимов В.А., Филатов О.Г., Щеголев П.Б. // Физика плазмы. 2023. Т. 49. № 12. С. 1375. https://www.doi.org/10.31857/S0367292123600851
  5. Андрианова Н.Н., Борисов А.М., Машкова Е.С., Шульга В.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 4. С. 51. https://www.doi.org/10.7868/S0207352816040041
  6. Андрианова Н.Н., Борисов А.М., Виргильев Ю.С., Машкова Е.С., Севостьянова В.С., Шульга В.И. // Поверхность. Рентгенов., синхротр. и нейтрон. исслед. 2013. № 3. С. 103. https://www.doi.org/10.7868/S0207352813030050
  7. Kaguchi Y., Meguro T., Hida A., Takai H., Maeda K., Yamamoto Y., Aoyagi Y. // Nucl. Instrum. Methods Phys. B. 2003. V. 206. P. 202. https://www.doi.org/10.1016/S0168-583X(03)00727-4
  8. Hechtl E., Bohdansky J. // J. Nucl. Mater. 1986. V. 141–143. P. 139. https://www.doi.org/10.1016/S0022-3115(86)80023-X
  9. Jeong S.H., Lim D.C., Boo J.-H., Lee S.B., Hwang H.N., Hwang C.C., Kim Y.D. // Appl. Catalysis A: General. 2007. V. 320. P. 152. https://www.doi.org/10.1016/j.apcata.2007.01.026
  10. Andrianova N., Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Makunin A.V., Vysotina E.A. // Vacuum. 2022. V. 205. P. 111477. https://www.doi.org/10.1016/j.vacuum.2022.111477
  11. Jimbou R., Nakamura K., Bandourko V., Okumura Y., Akiba M. // J. Nucl. Mater. 1998. V. 258–263. P. 724. https://www.doi.org/10.1016/S0022-3115(98)00252-9
  12. Андрианова Н.Н., Аникин В.А., Борисов А.М., Казаков В.А., Машкова Е.С., Овчинников М.А., Савушкина С.В. // Известия РАН. Серия физическая. 2018. Т. 82. № 2. P. 140. https://www.doi.org/10.7868/S0367676518020023
  13. Андрианова Н.Н., Борисов А.М., Казаков В.А., Макунин А.В., Машкова Е.С., Овчинникова М.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 3. C. 20. https://www.doi.org/10.31857/S1028096020030036
  14. Авилкина В.С., Андрианова Н.Н., Борисов А.М., Борисов В.В., Машкова Е.С., Тимофеев М.А., Виргильев Ю.С. // Прикладная физика. 2010. № 3. C. 42.
  15. Azizov E., Barsuk V., Begrambekov L., Buzhinsky O., Evsin A., Gordeev A., Grunin A., Klimov N., Kurnaev V., Mazul I., Otroshchenko V., Putric A., Sadovskiy Ya., Shigin P., Vergazov S., Zakharov A. // J. Nucl. Mater. 2015. V. 463. P. 792. https://www.doi.org/10.1016/j.jnucmat.2015.01.015
  16. Andrianova N.N., Borisov A.M., Vorobyeva E.A., Ovchinnikov M.A., Sleptsov V.V., Tsyrkov R.A. // Phys. Atomic Nuclei. 2023. V. 86. Iss. 10. P. 2191. https://www.doi.org/10.1016/j.vacuum.2021.110177
  17. James F. Ziegler, M.D. Ziegler, Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. Iss. 11–12. P. 1818. https://www.doi.org/10.1016/j.nimb.2010.02.091
  18. Мартыненко Ю.В. Теория блистеринга. Москва: ИАЭ им. И.В. Курчатова, 1979. 41 c.
  19. Гусева М.И., Мартыненко Ю.В. // Успехи физических наук. 1981. Т. 135. Вып. 4. P. 671. https://www.doi.org/10.1070/PU1981v024n12 ABEH004758
  20. Беграмбеков Л.Б. Процессы в твердом теле под действием ионного и плазменного облучения. Учебное пособие. Москва: МИФИ, 2008. 196 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».