Structural changes of the K-208 glass surface after proton irradiation of different intensity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Changes in the structure of the surface of K-208 glass irradiated in vacuum (10–4 Pa) by protons with energies of 30 keV have been studied. It has been established that the nature of the changes depends on the proton flux density (ϕр). At ϕр < 3.0 × 1010 cm–2·s–1, the changes are mainly associated with the emergence of percolation channels on the irradiated surface. Percolation channels during proton irradiation of glass are formed as a result of migration of Na+ ions in the field of the charge injected into the glass. As ϕр increases, the formation of gas-filled bubbles begins to play a significant role. The appearance of bubbles is due to the fact that the field migration of Na+ ions is accompanied by the release of non-bridge oxygen atoms, which provided electrical neutrality in the vicinity of the localization of these ions. At values of ϕ > 2 × 1011 cm–2·c–1, gas-filled bubbles and sodium microarrays form and grow in pairs. The authors believe that under these irradiation conditions, accelerated field migration of sodium ions through the percolation channel ensures intensive release of non-bridge oxygen atoms in its vicinity, followed by their migration and the formation of gas-filled bubbles.

作者简介

R. Khasanshin

Joint Stock Company “Composite”; Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: rhkhas@mail.ru
俄罗斯联邦, Korolev, Moscow region; Moscow

L. Novikov

Lomonosov Moscow State University

Email: rhkhas@mail.ru

Skobeltsyn Institute of Nuclear Physics

俄罗斯联邦, Moscow

参考

  1. Messenger S.R., Wong F., Hoang B., Cress C.D., Walters R.J., Kleuver C.A., Jones G. // IEEE Trans. Nucl. Sci. 2014. V. 61. № 6. P. 3348. https://www.doi.org/10.1109/TNS.2014.2364894.
  2. Toyoda K., Okumura T., Hosoda S., Cho M. // J. Spacecraft Rockets. 2005. V. 42. № 5. P. 947. https://www.doi.org/10.2514/1.116022
  3. Ferguson D.C., Wimberly S.C. The Best GEO Daytime Spacecraft Charging Index. // Proc. 50th AIAA Aerospace Sci. Mtg. January, 2013. P. AIAA 2013-0810. https://www.doi.org/10.2514/6.2013-810
  4. Модель космоса. Научно-информационное издание. Т. 2. / Ред. Новикова Л.С. М.: КДУ, 2007, 1144 с.
  5. Xinjie F., Lixin S., Jiacheng L. // J. Rare Earths. 2014. V. 32. P. 1037. https://www.doi.org/10.1016/S1002-0721(14)60180-0
  6. Kadono K., Itakura N., Akai T., Yamashita M., Yazawa T. // J. Phys.: Condensed Matter. 2010. V. 22. P. 045901. https://www.doi.org/10.1088/0953-8984/22/4/045901
  7. Kreidl N., Hensler J. // J. Am. Ceramic Soc. 2006. V. 38. P. 423. https://www.doi.org/10.1111/j.1151-2916.1955.tb14568.x
  8. Gedeon O., Hulinsky V., Jurek K. // Mikrochimica Acta. 2000. V. 132. № 2–4. P. 505. https://doi.org/10.1007/s006040050050
  9. Khasanshin R.H., Novikov L.S. // Adv. Space Res. 2016. V. 57. P. 2187. https://www.doi.org/10.1016/j.asr.2016.02.023
  10. Khasanshin H.R., Novikov S.L. // IEEE Transactions on Plasma Science. 2019. V.47, No 8. P. 3796-3800. https://www.doi.org/10.1109/TPS.2019.2916210
  11. Gavenda T., Gedeon O., Jurek K. // Nucl. Instrum. Methods. Phys. Res. B. 2014 V. 322. P. 7. https://www.doi.org/10.1016/j.nimb.2013.12.017
  12. Hanna R., Paulmier T., Belhaj M., Molinie P., Dirassen B., Payan D, Balcon N. // J. Appl. Phys. D. 2011. V. 44 P. 445402. https://www.doi.org/10.1088/0022-3727/44/44/445402
  13. Guerch K., Paulmier T., Guillemet-Fritsch S., Lenormand P. // Nucl. Instrum. Methods B. 2015. V. 349. P. 147. https://www.doi.org/10.1016/j.nimb.2015.02.046.
  14. Ковивчак В.С., Панова Т.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 8. С. 59. https://www.doi.org/10.7868/S020735281708008X
  15. Fakhfakh S., Jbara O., Belhaj M., Rondot S. // J. Appl. Phys. 2008. V. 104. P. 093704. https://www.doi.org/10.1063/1.3006012
  16. Ковивчак В.С., Попов В.Е., Панова Т.К., Бурлаков Р.Б. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2003. № 4. С. 38.
  17. Хасаншин Р.Х., Новиков Л.С., Коровин С.Б. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2017. № 9. С. 28. https://www.doi.org/10.7868/S0207352817090049
  18. Хасаншин Р.Х., Новиков Л.С. // Поверхность. Рентген., синхротрон. и нейтрон. исслед., 2018. № 11. С. 48. https://www.doi.org/10.1134/S0207352818110136
  19. Čermák J., Mihai L., Sporea D., Galagan Y., Fait J., Artemenko A., Štenclov P. Rezek B., Straticiuc M., Burducea I. // Solar Energy Materials and Solar Cells. 2018. V. 186. P. 284. https://www.doi.org/10.1016/j.solmat.2018.06.046
  20. Zhang Z., Yang W. // Opt. Mater. Express. 2017. V. 7. P. 3979. https://www.doi.org/10.1364/OME.7.003979
  21. Jensen T., Lawn B.R., Dalglish R.L., Kelly J.C. // Radiation Effects: Incorporating Plasma Science and Plasma Technology. 1976. V. 28. Iss. 3–4. P. 245. https://www.doi.org/10.1080/00337577608237446
  22. Хасаншин Р.Х., Применко Д.А. // Изв. РАН. Серия физическая. 2022. Т. 86. № 5. C. 633. https://www.doi.org/10.31857/S036767652205009X
  23. Colthup N.B., Daly L.H., Wiberley S.E. Introduction to Infrared and Raman Spectroscopy. 3d ed. L.: Academic Press, 1990. 547 p.
  24. Abbas A., Serruys Y., Ghaleb D., Delaye J., Boizot B., Reynard B., Calas G. // Nucl. Instrum. Methods B. 2000. V. 166–167. P. 445. https://www.doi.org/10.1016/S0168-583X(99)00695-3
  25. Zhang G.F., Wang T.S., Yang K.J., Chen L., Zhang L.M., Peng H.B., Yuan W., Tian F. // Nucl. Instrum. Methods B. 2013. V. 316. P. 218. https://www.doi.org/10.1016/j.nimb.2013.09.020
  26. Chen L., Zhang D.F., Lv P., Zhang J., Du X., Yuan W., Nan Sh. Zhu Z., Wang T.S. // J. Non-Crystalline Solids. 2016. V. 448. P. 6. https://www.doi.org/10.1016/j.jnobcrysol.2016.06.029
  27. Chen L., Wang T.S., Yang K.J., Peng H.B., Zhang G.F., Zhang L.M., Jiang H., Wang Q. // Nucl. Instrum. Methods B. 2013. V. 307. P. 566. https://www.doi.org/10.1016/j.nimb.2013.01.089
  28. Хасаншин Р.Х., Новиков Л.С. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2021. № 7. С. 30. https://www.doi.org/10.31857/S1028096021070086

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».