Experimental and numerical study of damage caused by high-current electron beam of construction materials intended for the first wall of powerful plasma installations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An experimental study of the effect of high-current electron beams on crystals made of polycrystalline tungsten and corrosion-resistant ferritic-martensitic steel EK-181 was carried out, as well as a numerical simulation of the process of interaction of the beam with the target, in which the energy of the electron beam is absorbed in the near-surface layers of the samples under study. The experiments are carried out on the Kalmar high-current electron accelerator at an average pulse energy of E ≈ 100 ± 20 J (pulse duration at half maximum 100 ns). During the experiments, samples were irradiated from one to ten times. In the numerical modeling, electron spectra were used, calculated on the basis of data (currents and voltages in the diode gap) obtained as a result of electrical measurements. The difference in the nature of destruction of tungsten and steel was demonstrated. It has been shown that tungsten begins to crack after three-pulse exposure with an energy of about 100 J, which correlates well with tests on other types of installations. On steel, minor cracking was observed only after 8–10 pulses of exposure. Numerous traces of droplets of melting and redeposition of the target material were found on the surface of the steel target. For both materials, the specific amount of energy that is absorbed in the region of interaction of the electron beam with the target is estimated.

Full Text

Restricted Access

About the authors

N. P. Bobyr

NRC “Kurchatov Institute”

Email: Kazakov_ED@nrcki.ru
Russian Federation, Moscow, 123182

E. D. Kazakov

NRC “Kurchatov Institute”; Keldysh Institute of Applied Mathematics RAS; Moscow Institute of Physics and Technology (National Research Institute)

Author for correspondence.
Email: Kazakov_ED@nrcki.ru
Russian Federation, Moscow, 123182; Moscow, 125047; Dolgoprudny, 141701

M. Yu. Orlov

NRC “Kurchatov Institute”

Email: Kazakov_ED@nrcki.ru
Russian Federation, Moscow, 123182

A. R. Smirnova

NRC “Kurchatov Institute”; Keldysh Institute of Applied Mathematics RAS; Moscow Institute of Physics and Technology (National Research Institute)

Email: anya4113@gmail.com
Russian Federation, Moscow, 123182; Moscow, 125047; Dolgoprudny, 141701

A. V. Spitsyn

NRC “Kurchatov Institute”

Email: Kazakov_ED@nrcki.ru
Russian Federation, Moscow, 123182

M. G. Strizhakov

NRC “Kurchatov Institute”

Email: Kazakov_ED@nrcki.ru
Russian Federation, Moscow, 123182

K. A. Sunchugashev

Peoples’ Friendship University of Russia

Email: Kazakov_ED@nrcki.ru
Russian Federation, Moscow, 117198

S. I. Tkachenko

NRC “Kurchatov Institute”; Keldysh Institute of Applied Mathematics RAS; Moscow Institute of Physics and Technology (National Research Institute); Joint Institute for High Temperatures, Russian Academy of Sciences

Email: Kazakov_ED@nrcki.ru
Russian Federation, Moscow, 123182; Moscow, 125047; Dolgoprudny, 141701; Moscow, 125412

References

  1. Будаев В.П. // Вопросы атомной науки и техники. Сер. термоядерный синтез. 2015. Т. 38. Вып. 4. С. 5. https://www.doi.org/10.21517/0202-3822-2015-38-4-5-332
  2. Martynenko Y.V., Budaev V.P., Grashin S.A., Shestakov E.A. // Bulletin of the Lebedev Physics Institute. 2017. V. 44(6). P. 182. https://www.doi.org/10.3103/S1068335617060070
  3. Zhitlukhin A., Klimov N., Landman I., Linke J., Loarte A., Merola M., Podkovyrov V., Federici G., Bazylev B., Pestchanyi S., Safronov V., Hirai T., Maynashev V., Levashov V., Muzichenko A. // J. Nucl. Mater. 2007. V. 363–365. P. 301. https://www.doi.org/10.1016/j.jnucmat.2007.01.027
  4. Martín-Solís J.R., Loarte A., Lehnen M. // Nuclear Fusion. 2017. V. 57. № 6. P. 066025. https://www.doi.org/10.1088/1741-4326/aa6939
  5. Бобырь Н.П., Казаков Е.Д., Крутиков Д.И., Курило А.А., Орлов М.Ю., Спицын А.В., Стрижаков М.Г. // Ядерная физика и инжиниринг. 2022. Т. 13. № 2. С. 113. https://www.doi.org/10.56304/S2079562922010092
  6. Поскакалов А.Г., Климов Н.С., Гаспарян Ю.М., Огородникова О.В., Ефимов В.С. // Вопросы атомной науки и техники. Сер. термоядерный синтез. 2018. Т. 41. № 1. С. 23. https://www.doi.org/10.21517/0202-3822-2017-41-1-23-28
  7. Гаркуша И.Е., Малыхин С.В., Махлай В.А., Пугачев А.Т., Баздырева С.В., Аксенов Н.Н. // Журнал технической физики. 2014. Т. 84. № 11. С. 41.
  8. Позняк И.М., Сафронов В.М., Цыбенко В.Ю. // Вопросы атомной науки и техники. Сер. термоядерный синтез. 2016. Т. 39. № 1. С. 15. https://www.doi.org/10.21517/0202-3822-2016-1-15-21
  9. Голубева А.В., Коваленко Д.В., Лиджигоряев С.Д., Барсук В.А., Бобырь Н.П., Медников А.А., Климов Н.С., Хуанг К., Терентьев Д., Ашикава Н., Чернов В.М. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2022. № 1. С. 30. https://www.doi.org/10.31857/S102809602201006X
  10. Демидов Б.А., Мартынов А.И. // Журнал экспериментальной и теоретической физики. 1981. Т. 80. № 2. С. 738.
  11. Аккерман А.Ф., Бушман А.В., Демидов Б.А., Ивкин М.В., Ни А.Л., Петров В.А., Рудаков Л.И., Фортов В.Е. // Журнал экспериментальной и теоретической физики. 1986. Т. 91. № 3. С. 1762.
  12. Демидов Б.А. // Физика плазмы. 2003. Т. 29. № 7. С. 670.
  13. Демидов Б.А., Ефремов В.П., Петров В.А., Мещеряков А.Н. // Поверхность. Рентген. синхротр. и нейтрон. исследования. 2009. № 9. С. 18.
  14. Садовничий Д.Н., Милехин Ю.М., Калинин Ю.Г., Казаков Е.Д., Лавров Г.С., Шереметьев К.Ю. // Физика горения и взрыва. 2022. Т. 58. № 2. С. 88. https://www.doi.org/10.15372/FGV20220210
  15. Демидов Б.А., Ивкин М.В., Петров В.А., Фанченко С.Д. // Атомная энергия. 1979. Т. 46. Вып. 2. с. 101.
  16. Милехин Ю.М., Садовничий Д.Н., Шереметьев К.Ю., Калинин Ю.Г., Казаков Е.Д., Марков М.Б. // Доклады академии наук. 2019. Т. 487. № 2. C. 159.
  17. Демидов Б.А., Казаков Е.Д., Калинин Ю.Г., Крутиков Д.И., Курило А.А., Орлов М.Ю., Стрижаков М.Г., Ткаченко С.И., Чукбар К.В., Шашков А.Ю. // Приборы и техника эксперимента. 2020. № 3. С. 90. https://www.doi.org/10.31857/S003281622003009X
  18. Бойко В.И., Валяев А.Н., Погребняк А.Д. // Успехи физических наук. 1999. Т. 169. № 11. С. 1243. https://doi.org/10.1070/PU1999v042n11ABEH000471
  19. Молодец А.М., Савиных А.С., Голышев А.А., Гаркушин Г.В., Шилов Г.В., Некрасов А.Н. // Физика металлов и металловедение. 2022. Т. 123. № 5. С. 554.
  20. Павленко А.В., Малюгина С.Н., Майорова А.С., Мокрушин С.С., Казаков Д.Н., Филатов С.Ю. Температурно-скоростные зависимости прочностных характеристик стали ЭК-181. // Труды “Забабахинских научных чтений”. 2019. С. 141.
  21. Кириллов А. К., Лаппа А. В., Пляшешников А. В., Щербакова Л. В. Программа расчета методом Монте-Карло электронно-фотонных полей в гетерогенных осесимметричных средах. 80/6 “Каскад”. Челябинск: ЧГУ, 1982.
  22. Berger M.J. Methods in Computational Physics. V. 1. New York: Academic Press, 1963. P. 135.
  23. Аккерман А.Ф., Никитушев Ю.М., Ботвин В.А. Решение методом Монте-Карло задач переноса быстрых электронов в веществе. Алма-Ата: Наука, 1972. С. 166.
  24. Пляшешников А. В., Кольчужкин А. М. // Атомная энергия. 1976. Т. 41. Вып. 6. С. 415.
  25. Григорьев И.С., Мейлихов Е.З. Физические величины. Справочник. М.: Энергоатомиздат, 1991.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical time dependence of the power of an electron beam with an energy of 120 (1); 100 (2) and 80 J (3), irradiating a sample.

Download (15KB)
3. Fig. 2. Images of the surface of tungsten targets after 3 (a) and 10 (b) exposures to an electron beam.

Download (41KB)
4. Fig. 3. Images of the surface of steel targets after 6 (a) and 10 (b) exposures to an electron beam.

Download (35KB)
5. Fig. 4. The fraction of electrons Ne whose energy dropped below the tracking threshold after interaction with the target, and the fraction of the beam energy absorbed by the target E depending on the distance to the irradiated surface of the target X in samples made of steel (a) and tungsten (b) with a thickness of 1 mm.

Download (62KB)
6. Fig. 5. The fraction of electrons Ne whose energy dropped below the tracking threshold after interaction with the target, and the fraction of the beam energy absorbed by the target E depending on the distance to the irradiated target surface X in the 100 μm thick near-surface layer of steel (a) and tungsten (b) samples.

Download (30KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».