Formation of thin GaAs buffer layers on silicon for light-emitting devices

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents the experimental results on research of growth processes of GaAs layers on silicon substrates by molecular beam epitaxy. The formation of buffer Si layer in a single growth process has been found to significantly improve the crystalline quality of the GaAs layers formed on its surface, as well as to prevent the formation of anti-phase domains both on of fcutted towards the [110] direction and on singular Si(100) substrates. It has been demonstrated that the use of cyclic thermal annealing at temperatures 350–660°C in the flow of arsenic atoms makes it possible to reduce the number of threading dislocations and increase the smoothness of the GaAs layers surface. At the same time, the article considers possible mechanisms that lead to an improvement in the quality of the surface layers of GaAs. It is shown that the thus obtained GaAs layers of submicron thickness on the singular Si(100) substrates have a mean square value of surface roughness 1.9 nm. The principal possibility of using thin GaAs layers on silicon as templates for forming on them light-emitting semiconductor heterostructures with active area based on self-organizing InAs quantum dots and InGaAs quantum well is presented. They are shown to exhibit photoluminescence at 1.2 µm at room temperature.

About the authors

V. V. Lendyashova

Saint Petersburg State University; Alferov University

Email: erilerican@gmail.com
Russian Federation, St. Petersburg; St. Petersburg

I. V. Ilkiv

Saint Petersburg State University; Alferov University

Email: fiskerr@ymail.com
Russian Federation, St. Petersburg; St. Petersburg

B. R. Borodin

Ioffe Institute

Email: erilerican@gmail.com
Russian Federation, St. Petersburg

D. A. Kirilenko

Ioffe Institute

Email: erilerican@gmail.com
Russian Federation, St. Petersburg

A. S. Dragunova

HSE University; Alferov University

Email: erilerican@gmail.com

International laboratory of quantum optoelectronics

Russian Federation, St. Petersburg; St. Petersburg

T. М. Shugabaev

Saint Petersburg State University; Alferov University

Author for correspondence.
Email: erilerican@gmail.com
Russian Federation, St. Petersburg; St. Petersburg

G. E. Cirlin

Saint Petersburg State University; Alferov University; ITMO University

Email: erilerican@gmail.com
Russian Federation, St. Petersburg; St. Petersburg; St. Petersburg

References

  1. Thomson D., Zilkie A., Bowers J.E., Komljenovic T., Reed G.T., Vivien L., Marris-Morini D., Cassan E., Virot L., Fédéli J.M., Hartmann J.M., Schmid J.H., Xu D.X., Boeuf F., O’Brien P., Mashanovich G.Z., Nedeljkovic M.N. // J. Opt. 2016. V. 18. № 7. P. 073003. https://www.doi.org/10.1088/2040-8978/18/7/073003
  2. Chen X., Milosevic M.M., Stanković S., Reynolds S., Bucio T.D., Li K., Thomson D.J., Gardes F., Reed G.T. // Proc. IEEE. 2018. V. 106. № 12. P. 2101. https://www.doi.org/10.1109/JPROC.2018.2854372
  3. Tang M., Park J.S., Wang Z., Chen S., Jurczak P., Seeds A., Liu H. // Prog. Quantum Electronics. 2019. V. 66. P. 1. https://www.doi.org/10.1016/j.pquantelec.2019.05.002
  4. Jiang C., Liu H., Wang J., Ren X., Wang Q., Liu Z., Ma B., Liu K., Ren R., Zhang Y., Cai S., Huang Y. // Appl. Phys. Lett. 2022. V. 121. № 6. P. 061102. https://www.doi.org/10.1063/5.0098264
  5. Li Q., Lau K.M. // Prog. Cryst. Growth Charact. Mater. 2017. V. 63. № 4. P. 105. https://www.doi.org/10.1016/j.pcrysgrow.2017.10.001
  6. Tanoto H., Yoon S.F., Lew K.L., Loke W.K., Dohrman C., Fitzgerald E.A., Tang L.J. // Appl. Phys. Lett. 2009. V. 95. № 14. P. 141905. https://www.doi.org/10.1063/1.3243984
  7. Loke W.K., Wang Y., Gao Y., Khaw L., Lee K.E.K., Tan C.S., Fitzgerald E.A., Yoon S.F. // Mater. Sci. Semicond. 2022. V. 146. P. 106663. https://www.doi.org/10.1016/j.mssp.2022.106663
  8. Kunert B., Mols Y., Baryshniskova M., Waldron N., Schulze A., Langer R. // Semicond. Sci. Technol. 2018. V. 33. № 9. P. 093002. https://www.doi.org/10.1088/1361-6641/aad655
  9. Norman J.C., Jung D., Zhang Z., Wan Y., Liu S., Shang C., Herrick R.W., Chow W.W., Gossard A.C., Bowers J.E. // IEEE J. Quantum Electron. 2019. V. 55. № 2. P. 1. https://www.doi.org/10.1109/JQE.2019.2901508
  10. Norman J., Kennedy M.J., Selvidge J., Li Q., Wan Y., Liu A.Y., Callahan P.G., Echlin M.P., Pollock T.M., Lau K.M., Gossard A.C., Bowers J.E. // Opt. Express. 2017. V. 25. № 4. P. 3927. https://www.doi.org/10.1364/OE.25.003927
  11. Wan Y., Norman J., Li Q., Kennedy M.J., Di L., Zhang C., Huang D., Zhang Z., Liu A.Y., Torres A., Jung D., Gossard A.C., Hu E.L., Lau K.M., Bowers J.E. // Optica. 2017. V. 4. № 8. P. 940. https://www.doi.org/10.1364/OPTICA.4.000940
  12. Benyoucef M., Alzoubi T., Reithmaier J.P., Wu M., Trampert A. // Physica Status Solidi A. 2014. V. 211. № 4. P. 817. https://www.doi.org/10.1002/pssa.201330395
  13. Wu M., Trampert A., Al-Zoubi T., Benyoucef M., Reithmaier J.P. // Acta Materialia. 2015. V. 90. P. 133. https://www.doi.org/10.1016/j.actamat.2015.02.042
  14. Wang J.S., Chen J.F., Huang J.L., Wang P.Y., Guo X.J. // Appl. Phys. Lett. 2000. V. 77. № 19. P. 3027. https://www.doi.org/10.1063/1.1323735
  15. Zhao Z.M., Hul’ko O., Kim H.J., Liu J., Sugahari T., Shi B., Xie Y.H. // J. Crystal Growth. 2004. V. 271. № 3–4. P. 450. https://www.doi.org/10.1016/j.jcrysgro.2004.08.013
  16. Kwoen J., Jang B., Lee J., Kageyama T., Watanabe K., Arakawa Y. // Optics Express. 2018. V. 26. № 9. P. 11568. https://www.doi.org/10.1364/OE.26.011568
  17. Wang Y., Ma B., Li J., Liu Z., Jiang C., Li C., Lui H., Zhang Y., Zhang Y., Wang Q., Xie X., Qiu X., Ren X., Wei X. // Optics Express. 2023. V. 31. № 3. P. 4862. https://www.doi.org/10.1364/OE.475976
  18. Wang T., Liu H., Lee A., Pozzi F., Seeds A. // Optics Express. 2011. V. 19. № 12. P. 11381. https://www.doi.org/10.1364/OE.19.011381
  19. Chen S.M., Tang M.C., Wu J., Jiang Q., Dorogan V.G., Benamara M., Mazur Y.I., Salamo G.J., Seeds A.J., Liu H. // Electronics Lett. 2014. V. 50. № 20. P. 1467. https://www.doi.org/10.1049/el.2014.2414
  20. Chen S., Li W., Wu J., Jiang Q., Tang M., Shutts S., Elliott S.N., Sobiesierski A., Seeds A.J., Ross I., Smowton P.M., Liu H. // Nature Photonics. 2016. V. 10. № 5. P. 307. https://www.doi.org/10.1038/nphoton.2016.21
  21. Ishizaka A., Shiraki Y. // J. Electrochem. Soc. 1986. V. 133. № 4. P. 666. https://www.doi.org/10.1149/1.2108651
  22. Kasu M., Kobayashi N. // Jpn. J. Appl. Phys. 1994. V. 33. № 1S. P. 712. https://www.doi.org/10.1143/jjap.33.712
  23. Kasu M., Kobayashi N. // J. Appl. Phys. 1995. V. 78. № 5. P. 3026. https://www.doi.org/10.1063/1.360053
  24. Choi D., Harris J.S., E. Kim E., McIntyre P.C., Cagnon J., Stemmer S. // J. Cryst. Growth. 2009. V. 311. № 7. P. 1962. https://www.doi.org/10.1016/j.jcrysgro.2008.09.138
  25. Jung D., Callahan P.G., Shin B., Mukherjee K., Gossard A.C., Bowers J.E. // J. Appl. Phys. 2017. V. 122. № 22. P. 225703. https://www.doi.org/10.1063/1.5001360
  26. Садофьев Ю. Г. // Физика и техника полупроводников. 2012. Т. 46. № . 11. С. 1393. https://www.doi.org/10.1134/S106378261211019X
  27. Ilkiv I., Lendyashova V., Talalaev V., Borodin B., Mokhov D., Reznik R., Cirlin G. MBE Growth and Optical Properties of InAs Quantum Dots in Si. // Proc. 2022 International Conference Laser Optics, Saint Petersburg, Russia. 2022. P. 1. https://www.doi.org/10.1109/ICLO54117.2022. 9839762
  28. Lendyashova V.V., Ilkiv I.V., Borodin B.R., Ubyivovk E.V., Reznik R.R., Talalaev V.G., Cirlin G.E. // St. Petersburg Polytechnic University Journal: Physics and Mathematics. 2022. V. 15. Iss. 3.2. P. 75. https://www.doi.org/10.18721/JPM.153.214
  29. Bansal B., Gokhale M.R., Bhattacharya A., Arora B.M. // J. Appl. Phys. 2007. V. 101. № 9. P. 094303. https://www.doi.org/10.1063/1.2710292
  30. Su X.B., Ding Y., Ma B., Zhang K.L., Chen Z.S., Li J.L., Cui X.R., Xu Y.Q., Ni H.Q., Niu Z.C. // Nanoscale Res. Lett. 2018. V. 13. P. 1. https://www.doi.org/10.1186/s11671-018-2472-y

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».