Modeling of silicon irradiation with C60 ions and the role of the interaction potential

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Molecular dynamic simulation was used to study the processes of impact of 2–14 keV C60 molecular ions on the Si(100) surface at temperatures of 0–1000 K. Tersoff–ZBL and Airebo interaction potentials were used and the electronic energy loss of fast particles was taken into account. It is shown that when simulating single impact events, the target temperature does not affect the development of the displacement cascade, but affects its thermalization and the formation of the crater on the surface. As the energy increases, the carbon penetration depth, the size of the formed crater and the rim increase. The sputtering coefficient of silicon atoms in this case increases linearly with energy, and in the case of carbon atoms it reaches a steady-state value at 10 keV. Using the Tersoff potential gives a larger number of atomized carbon atoms for single impact events compared to Airebo potential. During cumulative events, the formation of an etch pit is observed at the initial stage, followed by the carbon film growth. In contrast to single events, the use of the Airebo potential in the case of cumulative ion accumulation gives a higher sputtering coefficient than the Tersoff potential. The formation of carbide bonds in the crystal and an increase in their concentration with ion fluence slightly reduces the number of sputtered particles. Therefore, for correct comparison of simulation results with experiment, it is not enough to use the results of the analysis of single impact event. It is necessary to perform the simulation of the cumulative fluence accumulation.

Full Text

Restricted Access

About the authors

K. P. Karasev

Alferov University; Peter the Great Saint-Petersburg Polytechnic university

Author for correspondence.
Email: kir.karasyov2017@yandex.ru
Russian Federation, 195251, Saint-Petersburg; 195251, Saint-Petersburg

D. A. Strizhkin

Peter the Great Saint-Petersburg Polytechnic university

Email: kir.karasyov2017@yandex.ru
Russian Federation, 195251, Saint-Petersburg

A. I. Titov

Peter the Great Saint-Petersburg Polytechnic university

Email: kir.karasyov2017@yandex.ru
Russian Federation, 195251, Saint-Petersburg

P. A. Karaseov

Peter the Great Saint-Petersburg Polytechnic university

Email: platon.karaseov@spbstu.ru
Russian Federation, 195251, Saint-Petersburg

References

  1. Аброян И.А., Андронов А.Н., Титов А.И. Физические основы электронной и ионной технологии. М.: Высшая школа, 1984. 135 с.
  2. Zhang L.D.J., Zhang X., Wang H., Li H., Li Y., Bu D. // J. Phys. D. 2021. V. 54. P. 333001.
  3. Redinger A., Hansen H., Linke U., Rosandi Y., Urbas-sek H., Michely T. // Phys. Rev. Lett. 2006. V. 96. P. 106103. https://www.doi.org/10.1103/PhysRevLett.96.106103
  4. Ieshkin A., Kireev D., Ozerova K., Senatulin B. // Mat. Lett. 2020. V. 272. P. 127829. https://www.doi.org/10.1016/j.matlet.2020.127829
  5. Insepov Z., Hassanein A., Norem J., Swenson D.R. // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 261. P. 664. https://www.doi.org/10.1016/j.nimb.2007.04.134
  6. Kozole J., Winograd N. // Surface Analysis and Techniques in Biology / Ed. Smentkowski V.S., Springer Switzerland, 2014. P. 71. https://www.doi.org/10.1007/978-3-319-01360-2_4
  7. Mahoney C.M. Cluster Secondary Ion Mass Spectrometry: Principles and Applications. John Wiley & Sons, 2013.
  8. Delcorte A., Garrison B.J. // J. Phys. Chem. C. 2007. V. 111. P. 15312. https://www.doi.org/10.1021/jp074536j
  9. Khadem M., Pukha V.E., Penkov O.V., Khodos I.I., Belmesov A.A., Nechaev G.V., Kabachkov E.N., Karaseov P.A., Kim D.-E. // Surf. Coat. Technol. 2021. V. 424. P. 127670. https://www.doi.org/10.1016/j.surfcoat.2021.127670.
  10. Penkov O.V., Pukha V.E., Starikova S.L., Khadem M., Starikov V.V., Maleev M. V., Kim D.-E. // Biomaterials. 2016. V. 102. P. 130. https://www.doi.org/10.1016/j.biomaterials.2016.06.029
  11. Pukha V.E., Glukhov A.A., Belmesov A.A., Kabachkov E.N., Khodos I.I., Khadem M., Kim D.-E., Karaseov P.A. // Vacuum. 2023. V. 218. P. 112643. https://www.doi.org/10.1016/j.vacuum.2023.112643
  12. Pukha V., Popova J., Khadem M., Dae-Eun Kim, Kho-dos I., Shakhmin A., Mishin M., Krainov K., Titov A., Karaseov P. // International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics / Ed. Velichko E. et al. Cham: Springer, 2021. V. 255. P. 131. https://www.doi.org/10.1007/978-3-030-58868-7_15
  13. Maleyev M.V., Zubarev E.N., Pukha V.E., Drozdov A.N., Vus A.S., Devizenko A.Yu. // Metallofiz. Noveishie Tekhnol. 2015. V. 37. P. 91. https://www.doi.org/10.15407/mfint.37.06.0775
  14. Tersoff J. // Phys. Rev. B. 1988. V. 37. P. 6991. https://www.doi.org/10.1103/PhysRevB.37.6991
  15. Stuart S.J., Tutein A.B., Harrison J.A. // J. Chem. Phys. 2000. V. 112. P. 6472. https://www.doi.org/10.1063/1.481208
  16. Krantzman K.D., Kingsbury D.B., Garrison B.J. // Appl. Surf. Sci. 2006. V. 252. P. 6463. https://www.doi.org/10.1016/j.apsusc.2006.02.276
  17. Krantzman K.D., Garrison B.J. // Surf. Interface Anal. 2011. V. 43. P. 123. https://www.doi.org/10.1002/sia.3438
  18. Krantzman K.D., Wucher A. // J. Phys. Chem. C. 2010. V. 114. P. 5480. https://www.doi.org/10.1021/jp906050f
  19. Карасев К.П., Стрижкин Д.А., Титов А.И., Кара- сев П.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 1. P. 74.
  20. Thompson A.P., Aktulga H.M., Berger R., Bolintinea-nu D.S., Brown W.M., Crozier P.S., in't Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comp. Phys. Commun. 2022. V. 271. P. 10817. https://www.doi.org/10.1016/j.cpc.2021.108171
  21. Ziegler J.F., Biersack J.P. The Stopping and Range of Ions in Matter // Treatise on Heavy-Ion Science / Ed. Bromley D.A. Boston: Springer, 1985. P. 93. https://www.doi.org/10.1007/978-1-4615-8103-1_3
  22. Karasev K., Strizhkin D., Karaseov P. // IEEE Xplore Proceed. of the 2022 Int. Conf. on Electrical Engineering and Photonics, EExPolytech 2022. P. 242. https://www.doi.org/10.1109/EExPolytech56308. 2022.9950888
  23. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. // J. Chem. Phys. 1984. V. 81. P. 3684. https://www.doi.org/10.1063/1.448118
  24. Krantzman K.D., Garrison B.J. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. P. 652. https://www.doi.org/10.1016/j.nimb.2008.11.055
  25. Бериш Р. Распыление твердых тел ионной бомбардировкой. М.: Мир, 1984. 336 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average crater depth (a) and parapet height (b) on the surface of a silicon crystal depending on the initial energy of the C60 ion at temperatures of 0 (1, 2) and 1000 K (3, 4). Comparison for the Airebo (1, 3) and Tersoff (2, 4) interaction potentials.

Download (124KB)
3. Fig. 2. Average value of the radial coordinate of carbon atoms depending on the initial energy of the C60 ion at temperatures of 0 (1, 2) and 1000 K (3, 4) and the Airebo (1, 3) and Tersoff (2, 4) interaction potentials.

Download (77KB)
4. Fig. 3. Average number of sputtered silicon (1–4) and carbon (1 ′–4 ′) atoms at temperatures of 0 (1, 1 ′, 2, 2 ′) and 1000 K (3, 3 ′, 4, 4 ′) and Airebo (1, 1′, 3, 3 ′) and Tersoff (2, 2 ′, 4, 4 ′) interaction potentials.

Download (115KB)
5. Fig. 4. Cross-section of a 20 Å thick silicon crystal after 30 C60 molecules with energies of 2, 8 and 14 keV have been successively dropped onto its surface. Si atoms are light, C atoms are dark.

Download (125KB)
6. Fig. 5. Total number of sputtered atoms during successive incidence of C60 ions on the surface of a silicon crystal for energies of 8 (1, 2) and 14 keV (3, 4) and Tersoff (1, 3) and Aire- bo (2, 4) potentials. Every 10 incident ions are equivalent to a fluence of 3.4 × 1013 cm–2.

Download (75KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».