Electron–plasmon interaction in Bi2Te3–Sb2Te3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

During the study of the optical properties of solid solutions of Bi2Te3–Sb2Te3 p-type conductivity in the infrared range, it was found that in a single crystal Bi0.6Sb1.4Te3, deformation of the reflection coefficient spectra is observed in the frequency range of observation of the plasma resonance of free charge carriers. The deformation of the plasma edge increases with a decrease in temperature. Using the Kramers–Kronig dispersion relations from experimental reflection spectra, the spectral dependences of the real ε1 and imaginary parts ε2 of the permittivity function, as well as the energy loss function characterizing the rate of energy dissipation, are calculated. Splitting of the peak of the energy loss function was found, indicating the effect on the plasma resonance from another process occurring in the electronic system. It is established that such a process is the transition of electrons between nonequivalent extremes of the valence band. Convergence of collective and single-particle energies.

Full Text

Restricted Access

About the authors

N. P. Stepanov

Zabaikalsky State University

Author for correspondence.
Email: np-stepanov@mail.ru
Russian Federation, 672038, Chita

References

  1. Дюгаев А.М. // Письма в ЖЭТФ. 1992. Т. 55. № 5. С. 2171.
  2. Gerlah E., Grosse P., Rautenberg M., Senske M. // Physica Status Solidi B. 1976. V. 75. Iss. 2. P. 553. https://doi.org/10.1002/pssb.2220750218
  3. Broerman J.G. // Phys. Rev. B. 1970. V. 2. P. 1818. https://doi.org/10.1103/PhysRevB.2.1818
  4. Grynberg M., Le Toulles R., Balkanski M. // Phys. Rev. B. 1974. V. 9. P. 517. https://doi.org/10.1103/PhysRevB.9.517
  5. Broerman J.G. // Phys. Rev. B. 1972. V. 5. P. 397. https://doi.org/10.1103/PhysRevB.5.397
  6. Nanabe A., Noguchi D., Mitsuishi A. // Physica Status Solidi B. 1978. V. 90. P. 157.
  7. Tussing P., Rosental W., Hang A. // Physica Status Solidi B. 1972. V. 52. P. 451.
  8. Alstrom P., Nielsen H.J. // J. Phys. C. Solid State Phys. 1981. V. 14. P. 1153.
  9. Степанов Н.П., Иванов М.С. // Физика и техника полупроводников. 2022. Т. 56. Вып. 12. С. 1103. https://www.doi.org/10.21883/FTP.2022.12.54508.4243
  10. Jung S.-J., Kim S.K., Park H.-H., Hyun D.-B., Baek S.-H., Kim J.-S. // J. Electronic Mater. 2014. V. 43. P. 1726. https://doi.org/10.1007/s11664-013-2851-1
  11. Meroz O., Elkabets N., Gelbstein Y. // ACS Appl. Energy Mater. 2020. V. 3. P. 2090. https://doi.org/10.1021/acsaem.9b02133
  12. Liu W., Chi H., Walrath J. C., Chang A. // Appl. Phys. Lett. 2016. V. 108. P. 043902. https://doi.org/10.1063/1.4940923
  13. Bulat L.P., Drabkin I.A., Osvenskii V.B., Parkhomen-ko Yu.N., Pshenay-Severin D.A., Sorokin A.I., Igoni-na A.A., Bublik V.T., Lavrentev M.G. // J. Electronic Mater. 2015. V. 44. P. 1846. https://www.doi.org/10.1007/s11664-014-3570-y
  14. Лукьянова Л.Н., Бойков Ю.А., Усов О.А., Дани- лов В.А., Волков М.П. // Физика и техника полупроводников. 2017. Т. 51. № 7. С. 880. https://www.doi.org/10.21883/FTP.2017.07.44632.18
  15. Xiaojian L., Chaogang L., Xin L., Yujie Z., Bo Y. // Phys. Rev. Appl. 2020. V. 13. P. 041002. https://doi.org/10.1103/PhysRevApplied.13.041002
  16. Zhang D., Shi M., Zhu T., Xing D., Zhang H., Wang J. // Phys. Rev. Lett. 2019. V. 122. P. 206401. https://www.doi.org/https://doi.org/10.1103/PhysRev Lett.122.206401
  17. Scipioni K.L., Wang Z., Maximenko Y., Katmis F., Stei-ner C., Madhavan V. // Phys. Rev. B. 2018. V. 97. P. 125150. https://www.doi.org/https://doi.org/10.1103/PhysRev B.97.125150
  18. Ou Y., Liu C., Jiang G., Feng Y., Zhao D., Wu W., Wang X.-X., Li W., Song C., Wang L.-L., Wang W., Wu W., Wang Y., He K., Ma X.-C., Xue Q.-K. // Adv. Mater. 2018. V. 30. P. 1703062. https://www.doi.org/10.7498/aps.72.20230690
  19. Gong Y., Guo J., Li J., Zhu K., Liao M., Liu X., Zhang Q., Gu L., Tang L., Feng X., Zhang D., Li W., Song C., Wang L., Yu P., Chen X., Wang Y., Yao H., Duan W., Xu Y., Zhang S.-C., Ma X., Xue Q.-K., He K. // Chinese Phys. Lett. 2019. V. 36. № 7. P. 076801. https://www.doi.org/10.1088/0256-307x/36/7/076801
  20. Степанов Н.П., Калашников А.А., Урюпин О.Н. // Физика и техника полупроводников. 2021. Т. 55. № 7. С. 586. https://www.doi.org/10.21883/FTP.2021.07.51023.9647
  21. Wolff P.A. // Phys. Rev. Lett. 1970. V. 24. P. 266. https://www.doi.org/https://doi.org/10.1103/Phys RevLett.24.266
  22. Барышев Н.С. // Физика и техника полупроводников. 1975. Т.9. № 10. С. 2023.
  23. Elci A. // Phys. Rev. B. 1977. V. 16. P. 5443. https://doi.org/10.1103/PhysRevB.16.5443
  24. Шикторов П.Н. // Физика и техника полупроводников. 1986. Т. 20. № 6. С. 1089.
  25. Jablan M. // Phys. Rev. B. 2020. V. 101. P. 224503. https://doi.org/10.1103/PhysRevB.101.224503

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the energies of the plasmon Ep (1, 2) and the transition of electrons between nonequivalent extrema of the valence band ∆E (3, 4) in Bi2Te3–Sb2Te3 crystals at temperatures of 80 (1, 3) and 300 K (2, 4) [9].

Download (89KB)
3. Fig. 2. Reflectivity spectra R of the Bi0.6Sb1.4Te3 crystal obtained at temperatures of 292 (1); 250 (2); 220 (3); 173 (4); 101 (5); 78 K (6).

Download (139KB)
4. Fig. 3. Spectral dependences of the energy loss function Imε–1 of the Bi0.6Sb1.4Te3 crystal at temperatures of 78 (1); 101 (2); 173 (3); 292 K (4), calculated using the Kramers–Kronig relations from the spectra of the reflection coefficient R.

Download (98KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies