Dependence of the domain structure transformation kinetics on a temperature in heterophase Co/Pt/Co Films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using Kerr microscopy, the effect of temperature on the displacement of domain walls in ultrathin exchange-coupled ferromagnetic layers in Pt/Co/Pt/Co/Pt heterostructures with perpendicular magnetic anisotropy and a nonmagnetic wedge-shaped spacer is experimentally studied. The exchange interaction between Co layers was studied for spacer thicknesses from 5 to 6 nm in the temperature range from 200 to 300 K. Independent displacement of domain walls in Co layers under a perpendicular magnetic field occurs in the thickness range d0 < d < dCR. In the temperature range, when the domain walls are moved along the Pt wedge, they are stabilized in the equilibrium positions. These positions depend on the field strength, the thickness of the nonmagnetic interlayer, and temperature and is determined by the balance of forces caused by the external field acting on the boundary, the effective field of the exchange coupling between the layers Co and the coercivity field. After the external field is removed, under the influence of the exchange field, the domain walls relax to the initial state with d = d0. The characteristics of the relaxation process depend on temperature. The mechanism of domain wall stabilization near dCR is considered. It is shown that the critical thickness of the nonmagnetic spacer dCR and the coercivity field have opposite temperature dependences.

Full Text

Restricted Access

About the authors

V. S. Gornakov

Institute of Solid State Physics Russian Academy of Sciences

Author for correspondence.
Email: gornakov@issp.ac.ru
Russian Federation, 142432, Chernogolovka

I. V. Shashkov

Institute of Solid State Physics Russian Academy of Sciences

Email: gornakov@issp.ac.ru
Russian Federation, 142432, Chernogolovka

Y. P. Kabanov

Institute of Solid State Physics Russian Academy of Sciences

Email: gornakov@issp.ac.ru
Russian Federation, 142432, Chernogolovka

References

  1. Shull R.D., Iunin Y.L., Kabanov Y.P., Nikitenko V.I., Skryabina O.V., Chien C.L. // J. Appl. Phys. 2013. V. 113. P. 17C101. https://www.doi.org/10.1063/1.4793703
  2. Шашков И.В., Кабанов Ю.П., Горнаков В.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 11. С. 80. https://www.doi.org/10.31857/S1028096021110182
  3. Metaxas P.J., Stamps R.L., Jamet J.-P., Ferre J., Baltz V., Rodmacq B., Politi P. // Phys. Rev. Lett. 2010. V. 104. P. 237206. https://www.doi.org/10.1103/PhysRevLett.104.237206
  4. Politi P., Metaxas P.J., Jamet J.-P., Stamps R.L., Ferre J. // Phys. Rev. B. 2011. V. 84. P. 054431. https://www.doi.org/10.1103/PhysRevB.84.054431
  5. Metaxas P.J., Stamps R.L., Jamet J.-P., Ferre J., Baltz V., Rodmacq B. // J. Phys.: Condens. Matter. 2012. V. 24. P. 024212. https://www.doi.org/10.1088/0953-8984/24/2/024212
  6. Matczak M., Schäfer R., Urbaniak M., Kuświk P., Szymański B., Schmidt M. Aleksiejew J., Stobiecki F. // J. Magn. Magn. Mater. 2017. V. 422. P. 465. https://www.doi.org/10.1016/j.jmmm.2016.09.042
  7. Metaxas P.J., Jamet J.P., Ferre J., Rodmacq B., Dieny B., Stamps R.L. // J. Magn. Magn. Mater. 2008. V. 320. P. 2571. https://www.doi.org/10.1016/j.jmmm.2008.03.041
  8. Zhang F., Liu Z., Wen F., Liu Q., Li X., Ming X. // J. Supercond. Nov. Magn. 2017. V. 30. P. 533. https://www.doi.org/10.1007/s10948-016-3820-8
  9. Liu Q., Jiang S., Teng J. // Appl. Surf. Sci. 2018. V. 433. P. 556. https://www.doi.org/10.1016/j.apsusc.2017.10.098
  10. Moritz J., Rodmacq B., Auffret S., Dieny B. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 135001. https://www.doi.org/10.1088/0022-3727/41/13/135001
  11. Dieny B., Chshiev M. // Rev. Modern. Phys. 2017. V. 89. P. 025008. https://www.doi.org/10.1103/RevModPhys.89.025008
  12. Wilson R.B., Yang Y., Gorchon J., Lambert C.-H., Salahuddin S., Bokor J. // Phys. Rev. B. 2017. V. 96. P. 045105. https://www.doi.org/10.1103/PhysRevB.96.045105
  13. Krusin-Elbaum L., Shibauchi T., Argyle B., Gignac L., Weller D. // Nature. 2001. V. 410. P. 444. https://www.doi.org/10.1038/35068515
  14. Hellwig O., Berger A., Fullerton E.E. // J. Magn. Magn. Mater. 2005. V. 290–291. P. 1. https://www.doi.org/10.1016/j.jmmm.2004.11.151
  15. Hellwig O., Berger A., Kortright J.B., Fullerton E.E. // J. Magn. Magn. Mater. 2007. V. 319. P. 13. https://www.doi.org/10.1016/j.jmmm.2007.04.035
  16. Kiselev N.S., Bran C., Wolff U., Schultz L., Bogdanov A.N., Hellwig O., Neu V., Rößler U.K. // Phys. Rev. B. 2010. V. 81. P. 054409. https://www.doi.org/10.1103/PhysRevB.81.054409
  17. Lim W.L., Ebrahim-Zadeh N., Owens J.C., Hent- schel H.G.E., Urazhdin S. // Appl. Phys. Lett. 2013. V. 102. P. 162404. https://www.doi.org/10.1063/1.4802954
  18. Baruth A., Yuan L., Burton J.D., Janicka K., Tsym-bal E.Y., Liou S.H., Adenwalla S. // Appl. Phys. Lett. 2006. V. 89. P. 202505. https://www.doi.org/10.1063/1.2388892
  19. Bruno P., Chappert C. // Phys. Rev. B. 1992. V. 46. № 1. P. 261. https://www.doi.org/10.1103/PhysRevB.46.261
  20. Stiles M.D. // Phys. Rev. B. 1993. V. 48. № 10. P. 7238. https://www.doi.org/10.1103/PhysRevB.48.7238
  21. Parkin S.S.P. // Phys. Rev. Lett. 1991. V. 67. № 25. P. 3598. https://www.doi.org/10.1103/PhysRevLett.67.3598
  22. Grolier V., Renard D., Bartenlian B., Beauvillain P., Chappert C., Dupas C., Ferre J., Galtier M., Kolb E., Mulloy M., Renard J.P., Veillet P. // Phys. Rev. Lett. 1993. V. 71. № 18. P. 3023. https://www.doi.org/10.1103/PhysRevLett.71.3023
  23. Shashkov I.V., Kabanov Yu.P., Tikhomirov O.A., Gornakov V.S. // Magnetism. 2022. V. 2. P. 186. https://www.doi.org/10.3390/magnetism2020014

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic (a) and magneto-optical (b) images of the domain structure in a Co/Pt/Co sample. MB and MH are the magnetization of the upper and lower Co layers, respectively; DW is the position of the domain boundary.

Download (186KB)
3. Fig. 2. Magneto-optical images and the dependence of the displacement of domain walls on time along the Pt wedge: a – as a result of the action of a sequence of magnetic field pulses with an amplitude of 88 Oe and a duration of τ = 4 ms; b – during the relaxation of domain walls after the field ceases to act.

Download (278KB)
4. Fig. 3. Dependence of relaxation of domain boundaries after termination of the field action at a temperature of 270 (1) and 260 K (2).

Download (61KB)
5. Fig. 4. Dependence of the established equilibrium position of domain boundaries during its displacement along the Pt wedge after applying individual series of magnetic field pulses with a fixed amplitude in each series.

Download (53KB)
6. Fig. 5. Dependences of domain boundary displacement on the magnetic field strength at temperatures of 293 (1); 260 (2); 240 (3) and 220 K (4).

Download (59KB)
7. Fig. 6. Dependences of the maximum displacement and coercivity of the upper layer on temperature, obtained from the data of the family of curves x(H), presented in Fig. 5.

Download (66KB)
8. Рис. 7. Зависимости эффективного поля межслоевого обменного взаимодействия от толщины прослойки платины при температуре 293 (1); 260 (2); 240 (3) и 220 К (4).

Download (59KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies