Effects of laser pretreatment on the formation of nanostructured carbon on the surface of chlorinated polyvinyl chloride under high-power ion beam irradiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The features of formation of surface morphology of chlorinated polyvinyl chloride (pure and with the addition of the catalyst - ferrocene) under the influence of a high-power ion beam of nanosecond duration after the preliminary pulsed laser treatment of the polymer surface have been investigated. It was found that the morphology of the irradiated surface of chlorinated polyvinyl chloride after pulsed laser surface pretreatment differs significantly from the morphology of the irradiated surface of chlorinated polyvinyl chloride after a preliminary stationary heat treatment. For pure chlorinated polyvinyl chloride, pulsed laser pretreatment with increasing power leads to an increase in the porosity of the surface layer after high-power ion beam irradiation, whereas different surface morphologies, including fibers (including polymer fibers) of different diameters, can be obtained for the pre-stationary post-irradiation thermal treatment of this polymer. Pre-stationary thermal pretreatment of chlorinated polyvinyl chloride with the addition of ferrocene (Fe(C5H5)2) leads to a decrease in the diameter of formed carbon nanofibers (with an increase in the treatment temperature). During the pulsed laser pretreatment, an increase in the porosity of the treated layer and a slight increase in the proportion of nanofibers of larger diameter are observed. To explain the obtained differences for pulsed laser and stationary thermal pretreatment, the effect of polymer heating rate on the features of chlorinated polyvinyl chloride decomposition was analyzed.

About the authors

V. S. Kovivchak

Institute of Radiophysics and Physical Electronics, Omsk, Siberian Branch of RAS

Author for correspondence.
Email: kvs_docent@mail.ru
Russian Federation, 644024, Omsk

S. A. Matyushenko

Omsk Scientific Center, Siberian Branch of RAS

Email: kvs_docent@mail.ru
Russian Federation, 644024, Omsk

References

  1. Lin J., Peng Z., Liu Y., Ruiz-Zepeda F., Ye R., Samu- el E.L.G., Yacaman M.J., Yakobson B.I., Tour J.M. // Nat. Comm. 2014. V. 5. P. 5714. https://www.doi.org/10.1038/ncomms6714
  2. Dai X., Wu J., Qian Z., Wang H., Jian J., Cao Y., Rummeli M.H., Yi Q., Liu H., Zou G. // Sci. Adv. 2016. V. 2. P. 1601574. https://www.doi.org/10.1126/sciadv.1601574.
  3. Lamberti A., Serrapede M., Ferraro G., Fontana M., Perrucci F., Bianco S.,Chiolerio A., Bocchini S. // 2D Mater. 2017. V. 4. P. 035012. https://www.doi.org/10.1088/2053-1583/aa790e
  4. Liu M., Wu J., Cheng H. // Sci. China Technol. Sci. 2022. V. 65. P. 41. https://www.doi.org/10.1007/s11431-021-1918-8
  5. Liu F., Wang G., Ding X., Luo S. // Composites Comm. 2021. V. 25. P. 100714. https://www.doi.org/10.1016/j.coco.2021.100714
  6. Delacroix S., Wang H., Heil T., Strauss V. // Adv. Electron. Mater. 2020. V. 6. P. 2000463. https://www.doi.org/10.1002/aelm.202000463
  7. Rahimi R., Ochoa M., Ziaie B. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 16907. https://www.doi.org/10.1021/acsami.6b02952
  8. Zhang Z., Song M., Hao J., Wu K., Li C., Hu C. // Carbon. 2018. V. 127. P. 287. https://www.doi.org/10.1016/j.carbon.2017.11.014
  9. Vivaldi F.M., Dallinger A., Bonini A., Poma N., Sem-branti L., Biagini D., Salvo P., Greco F., Francesco F.D. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 30245. https://www.doi.org/10.1021/acsami.1c05614
  10. Wang Y., Zhao Y., Qu L. // J. Energy Chem. 2021. V. 59. P. 642. https://www.doi.org/10.1016/j.jechem.2020.12.002
  11. Beckham J.L., Li J.T., Stanford M.G., Chen W., McHugh E.A., Advincula P.A., Wyss K.M., Chyan Y., Boldman W.L., Rack P.D., Tour J.M. // ACS Nano. 2021. V. 15. P. 8976. https://www.doi.org/10.1021/acsnano.1c01843
  12. Ковивчак В.С., Кряжев Ю.Г., Запевалова Е.С. // Письма в ЖТФ. 2016. Т. 42. Вып. 3. С. 84. https://www.doi.org/10.1134/S1063785016020103
  13. Ковивчак В.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 7. С. 69. https://www.doi.org/10.1134/S0207352819070084
  14. Kovivchak V.S., Kryazhev Yu.G., Trenikhin M.V., Arbuzov A.B., Zapevalova E.S., Likholobov V.A. // Appl. Surf. Sci. 2018. V. 448. P. 642. https://www.doi.org/10.1016/j.apsusc.2018.04.093
  15. Ковивчак В.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 4. С. 35. https://www.doi.org/10.31857/S102809602004007X
  16. Ковивчак В.С., Арбузов А.Б., Тренихин М.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 7. С. 47. https://www.doi.org/10.31857/S1028096020070134
  17. Elakesh E.O., Hull, T.R. Price D., Carty P. // J. Vinyl Additive Technol. 2003. V. 9. P. 116. https://www.doi.org/10.1002/vnl.10073
  18. Liebman S.A., Ahlstrom D.H., Quinn E.J., Geigley A.G., Meltjsrey J.T. // J. Polym. Sci: Part A-1 1971. V. 9. P. 1921. https://www.doi.org/10.1002/pol.1971.150090711
  19. Ozaki J.-I., Watanabe T., Nishiyema Y. // J. Phys. Chem. 1993. V. 97. P. 1400. https://www.doi.org/10.1021/j100109a024
  20. Yao K., Gong J., Zheng J., Wang L., Tan H., Zhang G., Yichao L., Na H., Chen X.,Wen X., Tang T. // J. Phys. Chem. C. 2013. V. 117. P. 17016. https://www.doi.org/10.1021/jp4042556
  21. Han X.G., Miao S.M., Zhu X.P., Le M.K. // Appl. Surf. Sci. 2007. V. 253. P. 5425. https://www.doi.org/10.1016/j.apsusc.2006.12.024

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM image of the surface of pure CPVC after preliminary laser treatment (a, b –line 2, c, d –line 3) and a single irradiation of MIP with a current density of 150 A/cm2.

Download (1MB)
3. Fig. 2. SEM image of the CPVC surface with the addition of ferrocene after preliminary laser treatment (a, b – line 1, c, d – line 3) and a single irradiation of MIP with a current density of 150 A/cm2.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies