Dependence of the charge state of a light ion beam in matter on particle velocity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of applying the statistics of a discrete multiple scattering process to analytically describe the dependence of the charge state of light ions in matter on particle velocity are presented. It is shown that the use of a technique based on taking into account the dependence of the charge state of the beam ions on the ratio of the ion velocity to the minimum velocity of the electrons of the substance makes it possible to calculate the stopping power of the substance for lithium, beryllium, boron and carbon ions of medium and low energies, corresponding to the experimental results.

About the authors

N. N. Mikheev

Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS

Author for correspondence.
Email: kmikran@spark-mail.ru
Russian Federation, 119333, Moscow

I. Zh. Bezbakh

Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS

Email: kmikran@spark-mail.ru
Russian Federation, 119333, Moscow

References

  1. ICRU Report 73. Stopping of Ions Heavier Than Helium. International Commission on Radiation Units and Measurements. 2005.
  2. ICRU Report 49. Stopping Powers and Ranges for Protons and Alpha Particles. International Commission on Radiation Units and Measurements. 1993.
  3. Van Gastel R., Hlawacek G., Zandvliet H.J.W., Poelse-ma B. // Microelectron. Reliab. 2012. V. 52. № 9–10. P. 2104. https://doi.org/10.1016/j. microrel. 2012.06.130
  4. Ziegler J.F. SRIM: the Stopping and Range of Ions in Matter (www.srim.org)
  5. Weick H. ATIMA. https://web-docs.gsi.de/~weick/atima/
  6. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 11–12. P. 1818. https://doi.org/10.1016/j.nimb.2010.02.091
  7. Betz H.D., Hortig G, Leischner E., Schmelzer Ch., Stadler B., Weihrauch J. // Phys. Lett. A. 1966. V. 22. P. 643.
  8. Cruz S.A. // Radiat. Eff. 1986. V. 88. P. 159.
  9. Михеев Н.Н., Безбах И.Ж. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 1. С. 20. https://doi.org/10.31857/S1028096023010168
  10. Белкова Ю.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 3. С. 66. https://doi.org/10.31857/S1028096022030050
  11. Paul H. IAEA, NDS. https://www-nds.iaea.org/stopping/
  12. Михеев Н.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 3. С. 94. https://doi.org/10.31857/S1028096022030141.
  13. Михеев Н.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2010. № 4. С. 25.
  14. Зигбан К., Нордлинг К., Фальман А. и др. Электронная спектроскопия. М.: Мир, 1971. 494 с.
  15. Физические величины: Справочник. М.: Энергоатомиздат, 1991. 1232 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the braking capacity of aluminum S for a lithium ion beam with different energies: solid line – calculation with e1i = 6 eV; dashed dash - calculation with e1i = 7 eV; lines – approximate data from third–party authors [11]; symbols – experimental data from compilation X. Paul [11].

Download (118KB)
3. Fig. 2. Dependence of the inhibitory capacity of carbon for a lithium ion beam with different energies: solid line – calculation; lines – approximate data from third–party authors [11]; symbols - experimental data from compilation X. Paul [11].

Download (109KB)
4. Fig. 3. Dependence of the inhibitory ability of carbon for a beam of beryllium ions with different energies: solid line – calculation; lines – approximate data from third–party authors [11]; symbols - experimental data from compilation X. Paul [11].

Download (108KB)
5. Fig. 4. Dependence of the inhibitory ability of carbon for a beam of boron ions with different energies: solid line – calculation; lines – approximate data from third–party authors [11]; symbols - experimental data from compilation X. Paul [11].

Download (110KB)
6. Fig. 5. Dependence of the inhibitory ability of carbon for a beam of carbon ions with different energies: solid line – calculation; lines – approximate data from third–party authors [11]; symbols - experimental data from compilation X. Paul [2].

Download (119KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies