Electron distribution near the fast ion track in silicon

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model is proposed to describe the distribution of electrons near the track of a fast ion. The dependence of the fast electron flux on time, layer depth, and radial variable is modeled taking into account the statistical weight of each trajectory. It has been found that the pulse duration in the electron flux distribution is fractions of picoseconds, and the radial size of the cylindrical region where fast electrons are transported reaches tens of angstroms.

About the authors

N. V. Novikov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Author for correspondence.
Email: nvnovikov65@mail.ru
Russian Federation, 119991, Moscow

N. G. Chechenin

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: nvnovikov65@mail.ru
Russian Federation, 119991, Moscow

A. A. Shirokova

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: nvnovikov65@mail.ru
Russian Federation, 119991, Moscow

References

  1. Митерев А.М. // УФН. 2002. Т. 172. С.1131.
  2. Комаров Ф.Ф. // УФН. 2017. Т. 187. С.465.
  3. Bendel W.L., Petersen E.L. // IEEE Trans. Nucl. Sci. 1983. V. 30. P. 4481. https://doi.org/10.1109/TNS.1983.4333158
  4. Petersen E.L., Pickel J.C., Adams J.H. et al. // IEEE Trans. Nucl. Sci. 1992. V. 39. P. 1577.
  5. Bion T., Bourrieau J. // IEEE Trans. Nucl. Sci. 1983. V. 36. P. 2281.
  6. Akkerman A., Barak J. // IEEE Trans. Nucl. Sci. 2002. V. 49. P.1539.
  7. Novikov N.V., Chechenin N.G., Shirokova А.А. // Modern Phys. Lett. B. 2023. V. 37. P. 2350041.
  8. Третьякова С.П. // ФЭЧФЯ. 1993. Т. 23. Вып. 2. С. 364.
  9. Флеров Г.Н., Апель П.Ю., Дидык А.Ю., Кузнецов В.И., Оганесян Р.Ц. // Атомная энергия. 1989. Т. 67. С. 274.
  10. Новиков Л.С., Воронина Е.Н. Взаимодействие космических аппаратов с окружающей средой. М: КДУ, Университетская книга, 2021. 560 с.
  11. International Commission on Radiation Units and Measurements. Report 16, Linear energy transfer. 1970. https://doi.org/10.1093/jicru/os9.1.Report16
  12. Heinrich W. // Rad. Eff. 1977. V. 34. P. 143.
  13. Medvedev N., Volkov A.E., Rymzhanov R., Akhmetov F., Gorbunov S., Voronkov R., Babaev P. // J. Appl. Phys. 2023. V. 133. P. 100701. https://doi.org/10.1063/5.0128774
  14. Чумаков А.И. Действие космической радиации на интегральные схемы. М.: Радио и связь, 2004. 320 с.
  15. Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Solids. New York: Pergamon, 1985.
  16. Schiwietz G., Grande P.L. // Nucl. Instrum. Methods Phys. Res. B. 2001. V. 175–177. Р. 125.
  17. Rudd M.E., DuBois R.D., Toburen L.H., Ratcliffe C.A., Goffe T.V. // Phys. Rev. A. 1983. V. 28. P. 3244.
  18. Clementi E., Roetti C. // Atomic Data Nuclear Data Tables. 1974. V. 14. P. 177. http://cdfe.sinp.msu.ru/services/wftables/FirstPage_eng.htm
  19. Белкова Ю.А., Новиков Н.В., Теплова Я.А. Экспериментальные и теоретические исследования процессов взаимодействия ионов с веществом. М.: НИИЯФ МГУ, 2019. 228 с.
  20. Novikov N.V. // Rad. Phys. Chem. 2021. V. 189. P. 109699. https://doi.org/10.1016/j.radphyschem.2021.109699
  21. Stolterfoht N., Dubois R.D., Rivarola R.D. Electron Emission in Heavy Ion-Atom Collision. Springer, 1997. 250 p.
  22. Вавилов П.В. // ЖЭТФ. 1957. Т. 32. С. 920.
  23. Allison J., Amako K., Apostolakis J. et al. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 835. P. 186. http://dx.doi.org/10.1016/j.nima.2016.06.125 (geant4.web.cern.ch)
  24. Sempau J., Fernandez-Varea J.M., Acosta E., Salvat F. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 207. P. 107. https://doi.org/10.1016/S0168-583X(03)00453-1
  25. Новиков Н.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 6. С. 94. https://doi.org/10.31857/S1028096023060122
  26. International Commission on Radiation Units and Measurements. Report 37, Stopping Powers for Electrons and Positrons. 1984. https://doi.org/10.1016/0168-583X(85)90718-9 (https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html)
  27. Niehaus T.A., Heringer D., Torralva B., Frauenheim T. // Eur. Phys. J. D. 2005. V. 35. P. 467.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence on the ion energy of the ionization cross section of the silicon atom (1-3) and the maximum number of electron-hole pairs vmax(Z, E) per unit of ion track length 24Mg in the LPE approximation (4): 1 – p-Si in gases Sds(E, ε0) = 1 in (3), 2 – p-Si in a solid target Sds(E, ε0) > 1 in (3), 3 – 24Mg–Si in a solid target. Experimental data [16] for the cross section of proton ionization in neon (o) and argon (Δ) are presented.

Download (144KB)
3. Fig. 2. The distribution of the angle of departure of electrons in the collision of a silicon atom and a proton with energy: 0.5 (1); 1 (2); 5 MeV/nucleon (3).

Download (113KB)
4. Fig. 3. The distribution of the electron departure angle in the collision of 24Mg ions with energy E = 0.5 MeV/nucleon with silicon atoms at Ee ≤ 100 eV (a) and in the electron energy range (b): 100-200 (1); 200-500 (2); 500-1000 (3); ≥ 1000 eV (4).

Download (196KB)
5. Fig. 4. Results of calculations of electron energy losses in silicon by the Monte Carlo method [22]. Electrons with energy Ee fall normally to the surface of a silicon target with a thickness of d: 1 (1); 2 Å (2). The dashed dot indicates a linear extrapolation of the calculation results.

Download (88KB)
6. Fig. 5. The results of calculations using the Monte Carlo method [22] of the minimum thickness of the silicon target, at which the electron transmission coefficient satisfies the ratio Ftr(Ee) < 0.001. The dashed dot indicates the extrapolation of the calculation results for slow electrons.

Download (67KB)
7. Fig. 6. The average length of the electron track when it decelerates to the Emin energy: 0.5 (1); 1 (2); 5 MeV/nucleon (3).

Download (108KB)
8. Fig. 7. A model for describing the distribution of the number of electrons n(x, r, t) near the track of a fast ion moving along the x axis (indicated by a large arrow): v(Z, E) is the number of secondary electrons when an ion with energy E passes through a target with thickness dx. The dotted line indicates the tracks of electrons emitted with energy Ee at an angle θ relative to the direction of movement of the ion.

Download (48KB)
9. Рис. 8. Change in the time number of electrons, projecting through the surface at depth X, when passing ions 24Mg with energy E = = 0.5 Mev/nuclone from Silicon thickness d = 100y, depth: 1 (1); 5 (2); 20 (3); 50 (4); 70 Oh (5).

Download (138KB)
10. Fig. 9. Dependence of the total number of electrons at depth X when 24Mg ions pass through a silicon target with a thickness of d = 100 Å with energy: 0.5 (1); 1 (2); 5 MeV/nucleon (3).

Download (86KB)
11. Fig. 10. Dependence of the density of stopped electrons on the radial distance to the ion track when 24Mg ions pass a silicon target with a thickness of d = 100 Å with energy: 0.1 (1); 0.5 (2); 5 (3); 10 MeV/nucleon (4).

Download (118KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies