Mechanisms of formation and accumulation of misorientations in deformable metals and alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of misoriented substructures in plastically deformable metal materials has been theoretically studied. Expressions are obtained for the intensity of accumulation of low-angle and high-angle misorientation boundaries. Within the framework of a mathematical model of shear plastic deformation and hardening, numerical calculations of the dependences of the average characteristics of a defective medium on the degree of deformation under conditions of uniaxial compression with a constant strain rate at room temperature are performed. It is shown that the intensity of generation of low-angle tilt walls depends significantly on the scenario of changes in the density of jogs on the screw segments of dislocation loops emitted by dislocation sources. The main mechanism for the formation of low-angle walls is the rearrangement of clusters of edge segments of dislocation loops into tilt dislocation walls under the influence of flows of interstitial atoms generated by moving screw segments. It is assumed that low-angle walls merge into one until the total misorientation angle of the merged walls reaches a critical value of about 10°, after which the distance between dislocations in the wall decreases to the corresponding critical value and further penetration of individual dislocations into the wall becomes impossible. The expression for the intensity of the formation of high-angle boundaries was obtained as a consequence of the continuation of the work of dislocation sources and the formation of clusters of low-angle walls, the total energy of which is higher than the energy of an equilibrium high-angle boundary at the same misorientation.

About the authors

D. N. Cherepanov

Tomsk State University of Architecture and Building; Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: d_n_ch@mail.ru
Russian Federation, 634003, Tomsk; 634003, Tomsk

Yu. V. Solov’eva

Tomsk State University of Architecture and Building

Email: j_sol@mail.ru
Russian Federation, 634003, Tomsk

V. A. Starenchenko

Tomsk State University of Architecture and Building

Email: d_n_ch@mail.ru
Russian Federation, 634003, Tomsk

References

  1. Hoffmanner A.L. Metal Forming: Interrelation Between Theory and Practice. // Proc. Symp. on the Relation Between Theory and Practice of Metal Forming. Cleveland, Ohio, October, 1970. Boston: Springer, 2012. P. 503.
  2. Новиков И.И., Портной В.К. Сверхпластичность сплавов с ультрамелким зерном. М.: Металлургия, 1981. 168 с.
  3. Смирнов O.M. Обработка металлов давлением в состоянии сверхпластичности. М.: Машиностроение, 1979. 184 с.
  4. Утяшев Ф.З., Рааб Г.И. Научные основы деформационных технологий формирования ультрамелкозернистых и наноструктурных объемных материалов. Вологда: Инфра-Инженерия, 2021. 160 с.
  5. Zhilyaev A.P., Pshenichnyuk A.I., Utyashev F.Z., Raab G.I. Superplasticity and Grain Boundaries in Ultrafine-Grained Materials. Elsevier, 2020. 416 p.
  6. Утяшев Ф.З., Рааб Г.И., Валитов В.А. Деформационное наноструктурирование металлов и сплавов. Монография. СПб.: Наукоемкие технологии, 2020. 185 с.
  7. Рыбин В.В. Большие пластические деформации и разрушение металлов. М.: Металлургия, 1986. 224 с.
  8. Корзникова Г.Ф., Халикова Г.Р., Миронов С.Ю., Алетдинов А.Ф., Корзникова Е.А., Конькова Т.Н., Мышляев М.М. // Физическая мезомеханика. 2022. Т. 25. № 2. С. 47. https://doi.org./10.55652/1683-805X_2022_25_2_47
  9. Еникеев Ф.У. // Изв. вузов. Цветная металлургия. 2008. № 1. С. 43.
  10. Варгин А.Н. Бурханов Г.С., Зунг Нгуен Суан, Полькин В.И. // Международный научный журнал. 2013. № 6. С. 65.
  11. Рудаев Я.И. // Научно-технические ведомости СПбГТУ. 2005. № 2. С. 57.
  12. Перевезенцев В.Н., Свирина Ю.В. // Журнал технической физики. 1998. Т. 68. № 12. C. 39.
  13. Higashi K., Nieh T.G., Mabuchi M., Wadsworth J. // Scr. Metall. Mater. 1995. V. 32. № 7. P. 1079.
  14. Demirtas M., Kawasaki M., Yanar H., Purcek G. // Mater. Sci. Eng. A. 2018. № 730. P. 73.
  15. doi: 10.1016/j.msea.2018.05.104
  16. Demirtas M., Purcek G., Yanar H., Zhang Z.J., Zhang Z.F. // J. Alloys Compd. 2016. № 663. P. 775.
  17. Doi: 0.1016/j.jallcom.2015.12.142
  18. Старенченко В.А., Черепанов Д.Н., Соловьёва Ю.В., Попов Л.Е // Изв. вузов. Физика. 2009. № 4. С. 60.
  19. Старенченко В.А., Черепанов Д.Н., Селиваникова О.В. // Изв. вузов. Физика. 2014. Т. 57. № 2. С. 4.
  20. Кульман-Вильсдорф Д. // Физическое металловедение / Ред. Кан Р. Вып. 3. Дефекты кристаллического строения механические свойства металлов и сплавов. М.: Мир, 1968. 484 с.
  21. Старенченко В.А., Черепанов Д.Н., Слободской М.И. // Изв. вузов. Физика. 2009. № 9/2. С. 108.
  22. Parameswaran V.R., Weertman J. // Met. Trans. 1971. V. 2. P. 1233.
  23. Красноперова Ю.Г., Воронова Л.М., Дегтярев М.В., Чащухина Т.И., Реснина Н.Н. // Физика металлов и металловедение. 2015. Т. 116. № 1. С. 1.
  24. Mader S., Seeger A. // Acta Metall. 1960. V. 8. P. 513.
  25. Staubwasser N. // Acta Metall. 1959. V. 7. Iss. 1. P. 43.
  26. Беляков А.Н. // Физика металлов и металловедение. 2009. Т. 108. № 4. С. 412.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of the shear zone.

Download (119KB)
3. Fig. 2. The scheme of rearrangement of dislocation clusters into small-angle dislocation walls of inclination: dislocation clusters (a); creeping of edge segments (b); rearrangement of clusters into small-angle walls of inclination (c).

Download (380KB)
4. Fig. 3. The scheme of merging the walls of the slope into one small-angle boundary of disorientation while maintaining the total disorientation.

Download (131KB)
5. Fig. 4. The scheme of transformation of a cluster of small-angle boundaries of disorientation into one high-angle boundary while maintaining the total disorientation.

Download (310KB)
6. Fig. 5. Logistic curve of dependence of the average speed of movement of screw segments on voltage [19]: comparison with experimental data for lead at 4.2 (1), 77 (2), 300 K (3) (a); calculation data for various metals at room temperature (b).

Download (381KB)
7. Fig. 6. Dependences of the parameters of disoriented substructures on the degree of shear deformation (a): average sizes of fragments (1) and grains (9); experimental data: single crystal Ni, orientation [100] at temperatures 293 (2) and 673 K (3), Cu + 0.5Al (4), Cu + 5Al (5), Cu + 0.4Mn (6), Cu + 6Mn (7), Ni (8) [21]. Continuous average misorientation angle (1), experimental data for: nickel (2, 3); Cu (4) [22]; Cu + 12Al (5) copper alloy; Al (4-6) [23]; Cu (7) [24] (b). Densities of high-angle Ng (1) and small-angle NW(2) boundaries of disorientation in Ni (b).

Download (467KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies