Shear bands in amorphous alloys and their role in the formation of nanocrystals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The processes of evolution of the structure and surface morphology of Al87Ni8La5 and Fe76Si13B11 amorphous alloys under deformation have been studied. It is shown that the deformation occurs through the formation and propagation of shear bands, which form steps when they reach the surface. The formation of nanocrystals in shear bands was noted. It is shown that steps on the surface are formed under the combined action of several elementary shear bands. Shear bands have a variable thickness in the range from 5 to 20 nm. An elementary step has a thickness of about 15 nm. Shear bands can be combined into zones. The transverse size of the zones is about 1 μm. The formation of nanocrystals in zones can lead to anisotropy in the orientational position of nanocrystals in an amorphous matrix. With an increase in the degree of deformation, nanocrystals are formed not only in shear bands, but also in areas adjacent to them. There is a difference in the kinetics of the formation of nanocrystals in an alloy based on aluminum and iron.

About the authors

A. S. Aronin

Institute of Solid State Physics, Russian Academy of Sciences

Author for correspondence.
Email: aronin@issp.ac.ru
Russian Federation, 142432, Chernogolovka

N. A. Volkov

Institute of Solid State Physics, Russian Academy of Sciences

Email: aronin@issp.ac.ru
Russian Federation, 142432, Chernogolovka

E. A. Pershina

Institute of Solid State Physics, Russian Academy of Sciences

Email: aronin@issp.ac.ru
Russian Federation, 142432, Chernogolovka

References

  1. Inoue A., Ochiai T., Horio Y., Masumoto T. // Mater. Sci. Eng. 1994. V. 649. P. 649. https://doi.org/10.1016/0921-5093(94)90286-0
  2. He G., Löser W., Eckert J. // Scripta Mater. 2003. V. 48. P. 1531. https://doi.org/10.1016/S1359-6462(03)00128-3
  3. Louzguine-Luzgin D.V., Seki I., Ketov S.V., Louzguina-Luzgina L.V., Polkin V.I., Chen N., Fecht H., Vasiliev A.N., Kawaji H. // J. Non-Cryst. Solids. 2015. V. 419. P. 12. https://doi.org/10.1016/j.jnoncrysol.2015.03.018
  4. Yoshizawa, Y., Oguma, S., Yamauchi, K. // J. Appl. Phys. 1988. V. 64. P. 6044. https://doi.org/10.1063/1.342149
  5. Aronin A., Budchenko A., Matveev D., Pershina E., Tkatch V., Abrosimova G. // Rev. Adv. Mater. Sci. 2016. V. 46. P. 53.
  6. Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24 P. 1. https://doi.org/10.1557/jmr.2009.0001
  7. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74 P. 71. https://doi.org/10.1016/j.mser.2013.04.001
  8. Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Materialia. 2021. V. 209. P. 116785.
  9. doi.org/10.1016/j.actamat.2021.116785
  10. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
  11. Davani F.A., Hilke S., Rösner H., Geissler D., Gebert A., Wilde G. // J. Alloys Compd. V. 2020. V. 837. P. 155494. https://doi.org/10.1016/j.jallcom.2020.155494
  12. Binkowski I., Shrivastav G.P., Horbach J., Divinski S. V., Wilde G. // Acta Materialia. 2016. V. 109. P. 330. https://doi.org/10.1016/j.actamat.2016.02.06 1
  13. Aronin A.S., Louzguine-Luzgin D.V. // Mechanics Mater. 2017. V. 113. P. 19. http://dx.doi.org/10.1016/j.mechmat.2017.07.007
  14. Постнова Е.Ю., Абросимова Г.Е., Аронин А.С. // Поверхность. Рентген., синхротр, и нейтрон. исслед. 2021. № 11. С. 5. https://doi.org/10.31857/S1028096021110169
  15. Aronin A.S., Aksenov O.I., Matveev D.V., Pershina E.A., Abrosimova G.E. // Mater. Lett. 2023. V. 344. P. 134478. https://doi.org/10.1016/j.matlet.2023.134478
  16. Glezer A.M., Louzguine-Luzgin D.V., Khriplivets I.A., Sundeev R.V., Gunderov D.V., Bazlov A.I., Pogoz- hev Y.S. // Mater. Lett. 2019 V. 256. P. 126631. https://doi.org/10.1016/j.matlet.2019.126631
  17. Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Cryst. Solids. 2022. V. 577. P. 121279. https://doi.org/10.1016/j.jnoncrysol.2021.121279
  18. Mironchuk B., Abrosimova G., Bozhko S., Drozdenko A., Postnova E., Aronin A. // Mater. Lett. 2020. V. 273. P. 127941. https://doi.org/10.1016/j.matlet.2020.127941
  19. Maaß R., Samver K., Arnold W., Volkert C.F. // Appl. Phys. Lett. 2014. V. 105. P. 171902. https://doi.org/10.1063/1.4936388
  20. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Materialia. 2017. V. 140. P. 206. http://dx.doi.org/10.1016/j.actamat.2017.08.032
  21. Shahabi H.S., Scudino S., Kaban I., Stoica M., Escher B., Menzel S., Vaughan G.B.M., Kühn U., Eckert J. // Acta Materialia. 2016. V. 111. P. 187. http://dx.doi.org/10.1016/j.actamat.2016.03.035
  22. Pan J., Chen Q., Liu L., Li Y. // Acta Materialia. 2011 V. 59. P. 5146. https://doi.org/10.1016/j.actamat.2011.04.047
  23. Schmidt V., Rösner H., Peterlechner M., Wilde G. // Phys. Rev. Lett. 2015. V. 115. P. 035501. https://doi.org/10.1103/PhysRevLett.115.035501
  24. Abrosimova G., Aronin A., Budchenko A. // Mater. Lett. 2015. V. 139. P. 194. https://doi.org/10.1016/j.matlet.2014.10.076
  25. Abrosimova G., Aronin A., Fokin D., Orlova N., Postno- va E. // Mater. Lett. 2019. V. 252 P. 114. https://doi.org/10.1016/j.matlet.2019.05.099
  26. Huang Z.H., Li J.F., Rao Q.L., Zhou Y.H. // Mater. Sci. Engineer. A. 2008. V. 489. P. 380. https://doi.org/10.1016/j.msea.2007.12.027
  27. Nunes E., Pereira R.D., Freitas J.C.C., Passamani E.C., Larica C., Fernandes A.A.R., Sanchez F.H. // J. Mater. Sci. 2006. V. 41. P. 1649. https://doi.org/10.1007/s10853-005-4229-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Image of the surface of the amorphous alloy Al87Ni8La5 after rolling ((h0–h)/h0 = 0.05).

Download (429KB)
3. Fig. 2. Images of the shear band with aluminum nanocrystals in the amorphous alloy Al87Ni8La5 after rolling ((h0–h)/h0 = 0.05) obtained by transmission electron microscopy in the light (a) and dark field (b) modes.

Download (1MB)
4. Fig. 3. An image of the Al87Ni8La5 PS alloy with nanocrystals (indicated by arrows) obtained using high-resolution electron microscopy.

Download (889KB)
5. Fig. 4. The shear band and nanocrystals in the Al87Ni8La5 alloy after KVD: a – light-field image; b – dark-field image; c – electron diffraction.

Download (1MB)
6. Fig. 5. An image of the Al87Ni8La5 alloy after KVD (e = 6.5) obtained using high-resolution electron microscopy.

Download (790KB)
7. Fig. 6. X-ray image of the Al87Ni8La5 alloy after KVD (e = 6.5) in the region of the first diffuse maximum. The following are shown: experimental curve (1); superposition of diffuse reflections from a heterogeneous amorphous phase (curves 2 and 3) and diffraction reflections (curves marked with asterisks); total curve (4).

Download (123KB)
8. Fig. 7. X-ray of a sample of amorphous Fe76Si13B11 alloy deformed by the CVD method (e = 5.95): the region of the first diffuse maximum and the complete X-ray (in the insert). The black curve is experimental data, the blue one is a curve describing scattering from the amorphous phase.

Download (185KB)
9. Fig. 8. Image of the Fe76Si13B11 alloy surface after deformation of the CVD (e = 5.95) obtained by scanning electron microscopy.

Download (329KB)
10. Fig. 9. Image of the Fe76Si13B11 surface after deformation of the KVD (e = 5.95) obtained using atomic force microscopy.

Download (348KB)
11. Fig. 10. Cross-section profile Fe76Si13B11 after deformation of the KVD (e = 5.95).

Download (188KB)
12. Fig. 11. The structure of the amorphous Fe76Si13B11 alloy after deformation of the KVD (e = 7.2): a – light–field image; b - dark-field image; c – electron diffraction.

Download (986KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies