Magnetic domain structure of iron-based microwires after removal of the glass shell by chipping and chemical etching

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The magnetic domain structure of the surface of microwires with composition Fe73.9B13.2Si10.9C2 was studied by magnetic force microscopy. It has been found that the removal of glass shell by chipping leads to distortion of the original magnetic domain structure. Chemical etching of the glass shell makes it possible to observe the magnetic domain structure due to the stresses that have arisen due to the microwire production. In the absence of an applied magnetic field, a magnetic domain structure of the surface layer is observed, consisting of domain layers inclined to the microwire axis by 45 or 135 degrees. This structure has a shape close to a zigzag. The thickness of the domain layers is not constant and varies from 3 to 5 μm. It has been found that the application of a constant magnetic field along the microwire axis causes the formation of ring domain layers of various thicknesses (from 1 to 5 μm) with different orientations of the magnetic moment relative to the microwire surface. In a field of 60 oersteds along the axis of the microwire, the domain magnetic structure consists of only ring layers of domains. Magnetic field inversion leads to almost complete inversion of the observed domain structure. In this case, the complete removal of the magnetic field leads to the formation of a new domain structure of the surface layer. Such a structure is close in shape and position of the domains to the original one, but does not repeat it.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Aksenov

ISSP RAS

Хат алмасуға жауапты Автор.
Email: oleg_aksenov@inbox.ru
Ресей, Chernogolovka

A. Fuks

ISSP RAS; HSE University

Email: oleg_aksenov@inbox.ru
Ресей, Chernogolovka; Moscow

A. Aronin

ISSP RAS

Email: oleg_aksenov@inbox.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. Chiriac H., Ovari T. A., Pop G. // Phys. Rev. B 1995. V. 52. P. 10104. https://doi.org/10.1103/PhysRevB.52.10104
  2. Orlova N.N., Gornakov V.S., Aronin A.S. // J. Appl. Phys. 2017. V. 121. P. 205108. http://dx.doi.org/10.1063/1.4984055
  3. Honkura Y., Honkura Sh. // J. Magn. Magn. Mater. 2020. V. 513. P. 167240. https://doi.org/10.1016/j.jmmm.2020.167240
  4. Chiriac H., Ovari T.A. // Prog. Mater. Sci. 1996. V. 40. P. 333. https://doi.org/10.1016/S0079-6425(97)00001-7
  5. Talaat A., Zhukova V., Ipatov M., Blanco J.M., Gonzalez-Legarreta L., Hernando B., del Val J.J., González J., Zhukov A. // J. Appl. Phys. 2014. V. 115. P. 17A313. https://doi.org/10.1063/1.4863484
  6. Corte-León P., Zhukova V., Ipatov M., Blanco J.M., Gonza-lez J., Zhukov A. // Intermetallics. 2019. V. 105. P. 92. https://doi.org/10.1016/j.intermet.2018.11.013
  7. Gonzalez A., Zhukova V., Corte-Leon P., Chizhik A., Ipatov M., Blanco J. M., Zhukov A. // Sensors. 2022. V. 22(3). P. 1053. https://doi.org/10.3390/s22031053
  8. Churyukanova M., Kaloshkin S., Shuvaeva E., Mitra A., Panda A.K., Roy R.K., Murugaiyan P., Corte-Leon P., Zhukova V., Zhukov A. // JMMM. 2019. V. 492. P. 165598. https://doi.org/10.1016/j.jmmm.2019.165598
  9. Zhukov A., Ipatov M., Corte-León P., Gonzalez- Legarreta L., Churyukanova M., Blanco J. M., Gonza-lez J., Taskaev S., Hernando B., Zhukova V. // J. Alloys Compd. 2020. V. 814. P. 152225. https://doi.org/10.1016/j.jallcom.2019.152225
  10. Morón C., Cabrera C., Morón A., García, A., Gonzá- lez M. // Sensors. 2015. V. 15. P. 28340. http://doi.org/10.3390/s151128340
  11. Panina L.V., Mohri K. // Appl. Phys. Lett. 1994. V. 65. P. 1189. http://doi.org/10.1063/1.112104
  12. Mohri K., Uchiyama T., Panina L.V., Yamamoto M., Bushida K. // J. Sens. 2015. V. 2015. P. 718069. http://doi.org/10.1155/2015/718069
  13. Mohri K., Humphrey F.B., Panina L.V., Honkura Y., Yamasaki J., Uchiyama T., Hiram M. // Phys. Status Solidi. 2009. V. 206. P. 601. https://doi.org/10.1002/pssa.200881252
  14. Vereshchagin M., Baraban I., Leble S., Rodiono- va V. // JMMM. 2020. V. 504. P. 166646. https://doi.org/10.1016/j.jmmm.2020.166646
  15. Chizhik A., Garcia C., Zhukov A., Gawronski P., Kulakowski K., Gonzalez J., Blanco J.M. // JMMM. 2007. V. 316. P. 332. https://doi.org/10.1016/j.jmmm.2007.03.007
  16. Rodionova V., Baraban I., Chichay K., Litvinova A., Perov N. // JMMM. 2017. V. 422. P. 216. https://doi.org/10.1016/j.jmmm.2016.08.082
  17. Aksenov O.I., Abrosimova G.E., Aronin A.S., Orlova N.N., Churyukanova M.N., Zhukova V.A., Zhukov A.P. // J. Appl. Phys. 2017. V. 122. P. 235103. http://dx.doi.org/10.1063/1.5008957
  18. Chizhik A., Corte-Leon P., Zhukova V., Gonzalez J., Gawronski P., Blanco J.M., Zhukov A. // Sensors. 2023. V. 23. P. 3079. https://doi.org/10.3390/s23063079
  19. Chizhik A., Gonzalez J. Magnetic Microwires. A Magneto-Optical Study. Singapore: Pan Stanford Publishing, 2014.
  20. Kabanov Yu., Zhukov A., Zhukova V., Gonzalez J. // Appl. Phys. Lett. 2005. V. 87. P. 142507. https://doi.org/10.1063/1.2077854

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. A model of the magnetic domain structure of a microwire with positive magnetostriction. The short arrows show the magnetic moments.

Жүктеу (159KB)
3. Fig. 2. SEM image of a micropipe of the composition Fe73.9B13.2Si10.9C2.

Жүктеу (151KB)
4. Fig. 3. Two-dimensional and three-dimensional MSM images of the magnetic domain structure of the micro-conductor composition Fe73.9B13.2Si10.9C2 after chipping glass in two regions (at a distance of 50 microns from each other). The axis of the microwire corresponds to the axis of the abscissa in the images.

Жүктеу (1MB)
5. Fig. 4. Two-dimensional and three–dimensional MSM images of the magnetic domain structure of the microconductor composition Fe73.9B13.2Si10.9C2 after chemical etching: a - in the field 0 (a), 60 (b) and -60 E (c) directed along the axis of the sample; d – after removing the magnetic field.

Жүктеу (1MB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».