X-Ray Transfocators a Tunable X-Ray Focusing Apparatus Based on Compound Refractive Lenses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a new generation of ultra-compact and high-vacuum cooled X-ray refractive lens-based transfocators for collimation, transport, and focusing of hard X-rays. The transfocator is an optical device capable of changing the position of focus depending on the number of X-ray refractive lenses, which are exposed along the optical path of X-ray radiation. The design features of the device allow the individual optical elements to be controlled independently of each other, providing a more flexible adjustment of the focal distance for a wide range of applications. The small overall dimensions and light weight of the devices allow them to be integrated into any synchrotron radiation station.

About the authors

A. S. Narikovich

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

A. S. Korotkov

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

P. N. Medvedskaya

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

A. A. Barannikov

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

А. V. Sinitsyn

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

A. A. Lushnikov

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

I. B. Panormov

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

D. A. Zverev

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

I. I. Lyatun

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

A. A. Snigirev

International Research Center “Coherent X-ray Optics for Megascience facilities” Immanuel Kant Baltic Federal University

Author for correspondence.
Email: asnigirev@kantiana.ru
Russia, 236041, Kaliningrad

References

  1. Leemann S., Wurtz W. // Nucl. Instrum. and Methods Phys. Res. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018. V. 884. P. 92. https://doi.org/10.1016/j.nima.2017.12.012
  2. White S., Carmignani N., Carver L., Chavanne J., Farvacque L., Hardy L., Jacob J., Le Bec G., Liuzzo S.M., Perron T., Qin Q., Raimondi P., Revol J.-L., Scheidt K.B. // IPAC2021. 24–28 May. Geneva, Svitzerland: JACoW, V. 3. P. 1–6. https://doi.org/10.18429/JACoW-IPAC2021-MOXA01
  3. Ashanin I.A., Bashmakov Yu.A., Budkin V.A., Valentinov A.G., Gusarova M.A., Danilova D.K., Dementev A.A., Dmitriyeva V.V., Dudina N.S., Dyubkov V.S., Kliuchevskaia Yu.D., Korchuganov V.N., Lalayan M.V., Lozeev Yu.Yu., Lozeeva T.A., Makhoro A.A., Mekhanikova V.Yu., Mosolova O.A., Polozov S.M., Pronikov A.I. // Physics of Atomic Nuclei. Springer, 2018. V. 81. № 11. P. 1646. https://doi.org/10.1134/S1063778818110030
  4. Snigirev A., Snigireva I., Lengeler B., Kohn V. // Nature. 1996. V. 384. № 6604. P. 49. https://doi.org/10.1038/384049a0
  5. Snigirev A.A., Filseth B., Elleaume P., Klocke Th., Kohn V., Lengeler B., Snigireva I., Souvorov A., Tuemmler J. // High Heat Flux and Synchrotron Radiation Beamlines. 1997. V. 3151. P. 164. https://doi.org/10.1117/12.294496
  6. Chumakov A.I., Rüffer R., Leupold O., Barla A., Thiess H., Asthalter T., Doyle B.P., Snigirev A., Baron A.Q.R. // Appl. Phys.s Lett. 2000. V. 77. P.31. https://doi.org/10.1063/1.126867
  7. Zverev D., Barannikov A., Snigireva I., Snigirev A. // Optics Express. 2017. V. 25. № 23. P. 9. https://doi.org/10.1364/OE.25.028469
  8. Lyubomirskiy M., Snigireva I., Snigirev A. // Optics Express. 2016. V. 24. № 12. P. 13679. https://doi.org/10.1364/OE.24.013679
  9. Polikarpov M., Snigireva I., Snigirev A. // J. of Synchrotron Radiation. 2014. V. 21. № 3. P. 484. https://doi.org/10.1107/S1600577514001003
  10. Byelov D.V., Meijer J.-M., Snigireva I., Snigirev A., Rossi L., Esther van den Pol, Kuijk A., Philipse A., Imhof A., Alfons van Blaaderen, Gert Jan Vroegea, Petukhov A.V. // RSC Advances. 2013. V. 3. № 36. P. 15670. https://doi.org/10.1039/C3RA41223G
  11. Zverev D., Snigireva I., Snigirev A. // Microscopy and Microanalysis. 2018. V. 24. № S2. P. 296. https://doi.org/10.1017/S143192761801382X
  12. Snigirev A., Snigireva I., Kohn V., Yunkin V., Kuznetsov S., Grigoriev M.B., Roth T., Vaughan G., Detlefs C. // Phys. Rev. Lett. 2009. V. 103. № 6. P. 6. https://doi.org/10.1103/PhysRevLett.103.064801
  13. Snigirev A., Snigireva I., Lyubomirskiy M., Kohn V., Yunkin V., Kuznetsov S. // Optical Express. 2014. V. 22. № 21. P. 25842. https://doi.org/10.1364/OE.22.025842
  14. Zverev D., Snigireva I., Kohn V., Kuznetsov S., Yunkin V., Snigirev A. // Microscopy and Microanalysis. 2018. V. 24. № S2. P. 162. https://doi.org/10.1017/S1431927618013193
  15. Santoro G., Buffet A., Döhrmann R., Yu S., Körstgens V., Müller-Buschbaum P., Gedde U., Hedenqvist M., Roth S.V. // Rev. Scie Instrum. American Institute Phys. 2014. V. 85. № 4. P. 043 901. https://doi.org/10.1063/1.4869784
  16. Raimondi P. // Synchrotron Radiation News. 2016. V. 29. № 6. P. 8. https://doi.org/10.1080/08940886.2016.1244462
  17. Polikarpov M., Kononenko T.V., Ralchenko V.G., Ashkinazi E.E., Konov V.I., Ershov P., Kuznetsov S., Yunkin V., Snigireva I., Polikarpov V.M., Snigirev A. // Proceedings of SPIE. 2016. V. 9963. P. 99630Q–99630Q. https://doi.org/10.1117/12.2238029
  18. Terentyev S., Blank V., Polyakov S., Zholudev S., Snigirev A., Polikarpov M., Kolodziej T., Qian J., Zhou H., Shvyd’ko Y. // Appl. Phys. Lett. 2015. V. 107. № 11. P. 111 108. https://doi.org/10.1063/1.4931357
  19. Snigirev A., Snigireva I., Vaughan G., Wright J.P., Rossat M., Bytchkov A., Curfs C. // J. Phys.: Conference Series. 2009. V. 186. P. 10. https://doi.org/10.1088/1742-6596/186/1/012073
  20. Snigireva I., Snigirev A., Yunkin V., Drakopoulos M., Grigoriev M., Kuznetsov S., Chukalina M., Hoffmann M., Nuesse D., Voges E. // AIP Conference Proceedings. 2004. V. 705. P. 708. https://doi.org/10.1063/1.1757894
  21. Snigirev A., Snigireva I., Grigoriev M., Yunkin V., Di Michiel M., Vaughan G., Kohn V., Kuznetsov S. // Proc. SPIE. 2007. V. 6705. P. 670506. https://doi.org/10.1117/12.733609
  22. Vaughan G.B.M., Wright J.P., Bytchkov A., Rossat M., Gleyzolle H., Snigireva I., Snigirev A. // J. of Synchrotron Radiation. 2011. V. 18. № 2. P. 125. https://doi.org/10.1107/S0909049510044365
  23. Zozulya A.V., Bondarenko S., Schavkan A., Westermeier F., Grübel G., Sprung M. // Optical Express. 2012. V. 20. № 17. P. 18 967. https://doi.org/10.1364/OE.20.018967
  24. Berujon S., Ziegler E., Cojocaru R., Martin T. // Advances in X-ray Free-Electron Lasers Instrumentation IV 2017. V. 10237. P. 75. SPIE https://doi.org/10.1117/12.2269452
  25. Snigirev A., Ershov P., Snigireva I., Hanfland M., Dubrovinskaia N., Dubrovinsky L. // Microscopy and Microanalysis. 2018. V. 24. № S2. P. 236. https://doi.org/10.1017/S1431927618013533
  26. Yang L., Liu J., Chodankar S., Antonelli S., DiFabio J. // J. of synchrotron radiation. 2022. V. 29. № 2. P. 540. https://doi.org/10.1107/S1600577521013266
  27. Kornemann E., Márkus O., Opolka A., Zhou T., Greving I., Storm M., Krywka C., Last A., Mohr J. // Optics express. 2017. V. 25. № 19. P. 22455. https://doi.org/10.1364/OE.25.022455
  28. Buffet A., Rothkirch A., Döhrmann R., Körstgens V., Mottakin M., Abul Kashem, Perlich J., Herzog G., Schwartzkopf M., Gehrke R., Müller-Buschbaum P., Roth S.V. // J. of Synchrotron Radiation. 2012. V. 19. № 4. P. 647. https://doi.org/10.1107/S0909049512016895
  29. Weitkamp T., Scheel M., Giorgetta J.L., Joyet V., Le Roux V., Cauchon G., Moreno T., Polack F., Thompson A., Samama J.P. // In Journal of Physics: Conference Series 2017. V. 849. № 1. P. 012037. https://doi.org/10.1088/1742-6596/849/1/012037
  30. Zozulya A., Batchelor L., Appel K., Boesenberg U., Hallmann J., Kim C., Lobato I., Lu W., Mammen C., M¨oller J., Roth T., Samoylova L. et al. // X-Ray Lasers and Coherent X-Ray Sources: Development and Applications XIII 2019. V. 11111OH. P. 37. https://doi.org/10.1117/12.2533081
  31. Bowler M.W., Nurizzo D., Barrett R., Beteva A., Bodin M., Caserotto H., Delagenière S., Dobias F., Flot D., Giraud T., Guichard N., Guijarro M. et al. // J. of synchrotron radiation. International Union of Crystallography. 2015. V. 22. № 6. P. 1540. https://doi.org/10.1107/S1600577515016604
  32. Barannikov A., Shevyrtalov S., Zverev D., Narikovich A., Sinitsyn A., Panormov I., Snigireva I., Snigirev A. // EUV and X-ray Optics, Sources, and Instrumentation. International Society for Optics and Photonics. 2021. V. 11776. P. 117760. https://doi.org/10.1117/12.2582687
  33. Narikovich A., Polikarpov M., Barannikov A., Klimova N., Lushnikov A., Lyatun I., Bourenkov G., Zverev D., Panormov I., Sinitsyn A., Snigireva I., Snigirev A. // J. of Synchrotron Radiation. 2019. V. 26. № 4. https://doi.org/10.1107/S1600577519005708
  34. Andrejczuk A., Krzywiński J., Sakurai Y., Itou M. // Journal of synchrotron radiation. 2010. V. 17. № 5. P. 616. https://doi.org/10.1107/S0909049510022454
  35. Wilhelm F., Garbarino G., Jacobs J., Vitoux H., Steinmann R., Guillou F., Snigirev A., Snigireva I., Voisin P., Braithwaite D., Aoki D., Brison J.-P., Kantor I., Lyatun I., Rogalev A. // High Pressure Research. 2016. V. 36. № 3. P. 445. https://doi.org/10.1080/08957959.2016.1206092
  36. Roth T., Alianelli L., Lengeler D., Snigirev A., Frank Seiboth F. // MRS Bulletin. 2017. V. 42. № 6. P. 430. https://doi.org/10.1557/mrs.2017.117
  37. James R.W., Lawrence Bragg W.L. The Optical Principles of the Diffraction of X-rays. London: G. Bell and Sons, 1962.
  38. Snigireva I., Polikarpov M., Snigirev A. // Synchrotron Radiation News. 2021. P. 1–9. https://doi.org/10.1080/08940886.2021.2022387
  39. Kuznetsov S. IMT RAS. X-Ray Optics Calculator. Main Formulae. http://nano.iptm.ru/xcalc/xcalc_mysql/crl_par.php. Cited 10 August 2022.
  40. Medvedskaya P., Lyatun I., Shevyrtalov S., Polikarpov M., Snigireva I., Yunkin V., Snigirev A. // Optics Express. 2020. V. 28. № 4. P. 4773. https://doi.org/10.1364/OE.384647
  41. Lyatun I., Ershov P., Snigireva I., Snigirev A. // Journal of Synchrotron Radiation. 2020. V. 27. № 1. P. 44. https://doi.org/10.1107/S1600577519015625
  42. Snigireva I., Irifune T., Shinmei T., Medvedskaya P., Shevyrtalov S., Bourenkov G., Polikarpov M., Rashchenko S., Snigirev A., Lyatun I. // SPIE. 2021. V. 11 837. P. 8. https://doi.org/10.1117/12.2594675
  43. Serebrennikov D., Clementyev E., Semenov A., Snigirev A. // J. of Synchrotron Radiation. 2016. V. 23. № 6. P. 1315. https://doi.org/10.1107/S1600577516014508

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (42KB)
4.

Download (1MB)
5.

Download (500KB)
6.

Download (265KB)
7.

Download (1MB)
8.

Download (63KB)

Copyright (c) 2023 А.С. Нарикович, И.И. Лятун, Д.А. Зверев, И.Б. Панормов, А.А. Лушников, А.В. Синицын, А.А. Баранников, П.Н. Медведская, А.С. Коротков, А.А. Снигирев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies