Structural Features and Phase Transitions in the Process of Dehydrogenation of Composite Based on Magnesium Hydride and Carbon Nanotubes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Composite based on magnesium hydride and carbon nanotubes, formed by mechanical synthesis in a high-energy ball mill, is a core–shell structure with magnesium hydride particles 4–8 μm in size, coated with nanosized particles of carbon and carbon nanotubes; in addition, the introduction of CNTs into the structure of magnesium hydride takes place. The introduction of carbon nanotubes into magnesium hydride creates trapping centers and channels for hydrogen diffusion, which leads to a decrease in the energy, required for hydrogen sorption and desorption by magnesium hydride by the spillover mechanism. In turn, the decrease in energy leads to a decrease in the temperature of the onset of hydrogen release from 200°C for pure magnesium hydride to 100°C for the composite and the appearance of a low-temperature maximum of hydrogen desorption intensity (180°C) for the composite. An in situ analysis of phase transitions during dehydrogenation showed that phase transitions in the composite are divided into three main stages. The first stage is characterized by defect annealing and structure relaxation without desorption of hydrogen; at the second stage, hydrogen is desorbed by the spillover mechanism without dissociation of hydrides; and at the third stage, hydrides are dissociated followed by desorption of the remaining hydrogen.

Sobre autores

V. Kudiiarov

National Research Tomsk Polytechnic University

Autor responsável pela correspondência
Email: kudiyarov@tpu.ru
Russia, 634050, Tomsk

R. Elman

National Research Tomsk Polytechnic University

Email: kudiyarov@tpu.ru
Russia, 634050, Tomsk

N. Kurdyumov

National Research Tomsk Polytechnic University

Email: kudiyarov@tpu.ru
Russia, 634050, Tomsk

N. Pushilina

National Research Tomsk Polytechnic University

Email: kudiyarov@tpu.ru
Russia, 634050, Tomsk

Bibliografia

  1. Zhang X., Liu Y., Ren Z., Zhang X., Hu J., Huang Z., Lu Y., Gao M., Pan H. // Energy Environ. Sci. 2020. V. 14. № 4. P. 2302.
  2. Wen J., de Rango P., Allain N., Laversenne L., Grosdidier T. // J. Power Sources. 2020. V. 480. P. 13.
  3. Sun Y., Shen C., Lai Q., Liu W., Wang D.W., Aguey-Zinsou K.F. // Energy Storage Mater. 2018. V. 10. P. 168.
  4. Kudiiarov V., Lyu J., Semenov O., Lider A., Chaemchuen S., Verpoort F. // Appl. Mater. Today. 2021. V. 25. P. 19.
  5. Shao H., Wang Y., Xu H., Li X. // J. Solid State Chem. 2005. V. 178. № 7. P. 2211.
  6. Hanada N., Ichikawa T., Fujii H. // J. Phys. Chem. B. 2005. V. 109. № 15. P. 7188.
  7. Lyu J., Kudiiarov V., Lider A. // Nanomater. 2020. V. 10. P. 31.
  8. Shao H., Wang Y., Xu H., Li X. // J. Solid State Chem. 2005. V. 178. № 7. P. 2211.
  9. Wang Y., Lan Z., Huang X., Liu H., Guo J. // Int. J. Hydrogen Energy. 2019. V. 44. № 54. P. 28863.
  10. Kadri A., Yao X. // Int. J. Recent Technol. Eng. 2019. V. 8. № 1. P. 3149.
  11. Lototskyy M., Sibanyoni J.M., Denys R.V., Williams M., Pollet B.G., Yartys V.A. // Carbon. 2013. V. 57. P. 146.
  12. Wu C.Z., Wang P., Yao X., Liu C., Chen D.M., Lu G.Q., Cheng H.M. // J. Alloys Compnd. 2006. V. 414. № 1–2. P. 259.
  13. Chen D., Chen L., Liu S., Ma C.X., Chen D.M., Wang L.B. // J. Alloys Compnd. 2004. V. 372. № 1–2. P. 231.
  14. Huang Z.G., Guo Z.P., Calka A., Wexler D., Liu H.K. // J. Alloys Compnd. 2007. V. 427. № 1–2. P. 94.
  15. Kudiyarov V.N., Elman R.R., Kurdyumov N. // Metals. 2021. V. 11. № 9. 14 p.
  16. Kudiiarov V.N., Kashkarov E.B., Syrtanov M.S., Lider A.M. // Int. J. Hydrog. Energy. 2017. V. 42. P. 10604.
  17. Шмаков А.Н., Толочко Б.П., Жогин И.Л., Шеромов М.А. Станция “Прецизионная дифрактометрия II” на канале СИ № 6 накопителя электронов ВЭПП-3 // Тез. докл. VII нац. конф. РСНЭ-НБИК 2009. М.: ИК РАН–РНЦ КИ. 2009. С. 559.
  18. Шмаков А.Н., Иванов М.Г., Толочко Б.П., Шарафутдинов М.Р., Анчаров А.И., Жогин И.Л., Шеромов М.А. Новые возможности для рентгенодифракционных исследований в Сибирском центре СИ // Тезисы XVIII Междунар. конф. по использованию синхротронного излучения. 2010. С. 68.
  19. Аульченко В.М. Однокоординатный рентгеновский детектор // Школа молодых специалистов “Синхротронное излучение. Дифракция и рассеяние”. 2009. С. 6.
  20. PDF-2 2023. https://www.icdd.com/pdf-2. International centre for diffraction data
  21. FullProf suite. https://www.ill.eu/sites/fullprof. Institut Laue-Langevin
  22. Crystallographica Search-Match. https://www.iucr.org/resources/other-directories/software/crystallographica-search-match. International Union of Crystallography.
  23. Wu C., Cheng H.M. // J. Mater. Chem. 2010. V. 20. № 26. P. 5390.
  24. Yao X., Wu C., Du A., Lu G.Q., Cheng H., Smith S.C., Zou J., He Y. // J. Phys. Chem. B. 2006. V. 110. № 24. P. 11697.
  25. Shim J.H., Park M., Lee Y.H., Kim S., Im Y.H., Suh J.Y., Cho Y.W. // Int. J. Hydrogen Energy. 2014. V. 39. № 1. P. 349.
  26. Amirkhiz B.S., Danaie M., Mitlin D. // Nanotechnology. 2009. V. 20. № 20. 14 p.
  27. Wu C., Wang P., Yao X., Liu C., Chen D., Lu G.Q., Cheng H. // J. Phys. Chem. B. 2005. V. 109. № 47. P. 22217.
  28. Pandey S.K., Singh R.K., Srivastava O.N. // Int. J. Hydrogen Energy. 2009. V. 34. № 23. P. 9379.
  29. Du A.J., Smith S.C., Yao X.D., He Y., Lu G.Q. // J. Phys. Conf. Ser. 2006. V. 29. № 1. P. 7.
  30. Ullah Rather S., Hwang S.W. // Int. J. Hydrogen Energy. 2016. V. 41. № 40. P. 18114.
  31. Wu C.Z., Wang P., Yao X., Liu C., Chen D.M., Lu G.Q., Cheng H.M. // J. Alloys Compd. 2006. V. 420. № 1–2. P. 278.
  32. Campos R.B.V., Camargo S.A.D.S., Brum M.C., Santos D.S.D. // Mater. Res. 2017. V. 20. P. 85.
  33. Shen C., Aguey-Zinsou K.F. // Frontiers Energy Res. 2017. V. 5. P. 6.
  34. Sun Y., Shen C., Lai Q., Liu W., Wang D. W., Aguey-Zinsou K. F. // Energy Storage Mater. 2018. V. 10. P. 168.
  35. Crivello J.C., Dam B., Denys R.V., Dornheim M., Grant D.M., Huot J., Jensen T.R., de Jongh P., Latroche M., Milanese C., Milcˇius D., Walker G.S., Webb C.J., Zlotea C., Yartys V.A. // Appl. Phys. A. 2016. V. 122. №. 2. P. 20.
  36. Liu J., Schaef H.T., Martin P.F., McGrail B.P., Fifield L.S. // ACS Appl. Energy Mater. 2019. V. 2. № 7. P. 5272.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (3MB)
3.

Baixar (97KB)
4.

Baixar (766KB)

Declaração de direitos autorais © В.Н. Кудияров, Р.Р. Эльман, Н.Е. Курдюмов, Н.С. Пушилина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies