Microstrip Silicon Detector for Study of Ultra-Fast Processes at the Synchrotron Radiation Beam

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Present status of the development of the prototype of the Detector for imaging of explosions (DIMEX) based on silicon microtrip sensor is discussed. The prototype includes silicon p-in-n sensor with metal strips in direct contact with p-implants. Strips are 30 mm long and have 50 um pitch. Signals from the strips are read out with specially developed ASICs DMXS6A, that include 6 channels with DC compensation circuit at the input, four integrators, 32 analogue memory cells and output analogue shift register. The prototype detector has 96 registration channels provided with 16 DMXS6A ASICs. Each strip of the sensor is connected to the guard-ring through a 400 Ohm resistor and through 100 kOhm resistor to the input of the front-end ASIC. This resistive divider allows to adapt the dynamic range of the integrator of the ASIC to the full flux range of the beam line 8 at the VEPP-4M storage ring that includes 9-pole wiggler with 1.9 T B-field as SR source. The measurements of the dynamic range of the DIMEX-Si prototype demonstrate that maximum photon flux from one bunch that can be measured by this detector exceeds 100 000 photons per channel. For these measurements the sensor was inclined at an angle of 1.7 degrees with respect to the beam plane in order to increase quantum efficiency. The possibility to work in multi-bunch mode with bunches following in 55 ns is demonstrated, that proves that this detector can be successfully exploited at new SR-source SKIF that is under construction in Novosibirsk region.

Авторлар туралы

V. Aulchenko

Budker Institute of Nuclear Physics SB RAS

Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk

A. Glushak

Budker Institute of Nuclear Physics SB RAS; Synchrotron Radiation Facility SKlF, Boreskov Institute of Catalysis SB RAS; Томский государственный университет

Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Россия, 634050, Томск

V. Zhulanov

Budker Institute of Nuclear Physics SB RAS

Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk

A. Zhuravlev

Budker Institute of Nuclear Physics SB RAS; Synchrotron Radiation Facility SKlF, Boreskov Institute of Catalysis SB RAS

Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

V. Kiselev

Budker Institute of Nuclear Physics SB RAS

Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk

V. Kudryavtsev

Budker Institute of Nuclear Physics SB RAS; Novosibirsk State University

Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

P. Piminov

Budker Institute of Nuclear Physics SB RAS; Synchrotron Radiation Facility SKlF, Boreskov Institute of Catalysis SB RAS

Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

V. Titov

Budker Institute of Nuclear Physics SB RAS

Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk

L. Shekhtman

Budker Institute of Nuclear Physics SB RAS; Novosibirsk State University; Томский государственный университет

Хат алмасуға жауапты Автор.
Email: L.I.Shekhtman@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Россия, 634050, Томск

Әдебиет тізімі

  1. Tolochko B.P., Kosov A.V., Evdokov O.V., Zhogin I.L., Ten K.A., Pruuel E.R., Shekchtman L.I., Aulchenko V.M., Zhulanov V.V., Piminov P.F., Nazmov V.P., Zolotarev K.V., Kulipanov G.N. // Phys. Procedia. 2016. V. 84. P. 427. https://www.doi.org/10.1016/j.phpro.2016.11.072
  2. Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaev S.E., Kiselev V.A., Levichev E.B., Meshkov O.I., Mishnev S.I., Nikitin S.A., Nikolaev I.B., Sinyatkin S.V., Vobly P.D., Zolotarev K.V., Zhuravlev A.N. // Phys. Procedia. 2016. V. 84. P. 19. https://www.doi.org/10.1016/j.phpro.2016.11.005
  3. Aulchenko V.M., Zhulanov V.V., Kulipanov G.N., Ten K.A., Tolochko B.P., Shekhtman L.I. // Physics-Uspekhi. 2018. V. 61. № 6. P. 515. https://www.doi.org/10.3367/UFNe.2018.01.038339
  4. Aulchenko V., Papushev P., Ponomarev S., Shekhtman L., Zhulanov V. // J. Synchrotron Radiation. 2003. V. 10. № 5. P. 361. https://www.doi.org/10.1107/S0909049503009142
  5. Aulchenko V., Evdokov O., Ponomarev S., Shekhtman L., Ten K., Tolochko B., Zhogin I., Zhulanov V. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 513. Iss. 1–2. P. 388. https://www.doi.org/10.1016/j.nima.2003.08.067
  6. Aulchenko A., Zhulanov V., Shekhtman L., Tolochko B., Zhogin I., Evdokov O., Ten K. // Nuclear Nucl. Instrum. Methods Phys. Res. A. 2005. V. 543. Iss. 1. P. 350. https://www.doi.org/10.1016/j.nima.2005.01.254
  7. Aulchenko V.M., Evdokov O.V., Shekhtman L.I., Ten K.A., Tolochko B.P., Zhogin I.L., Zhulanov V.V. // J. Instrumentation. 2008. V. 3. № 5. P. P05005. https://www.doi.org/10.1088/1748-0221/3/05/P05005
  8. Aulchenko V.M., Evdokov O.V., Shekhtman L.I., Ten K.A., Tolochko B.P., Zhogin I.L., Zhulanov V.V. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 603. Iss. 1–2. P. 73. https://www.doi.org/10.1016/j.nima.2008.12.163
  9. Aulchenko V.M., Baru S.E., Evdokov O.V., Leonov V.V., Papushev P.A., Porosev V.V., Savinov G.A., Sharafutdinov M.R., Shekhtman L.I., Ten K.A., Titov V.M., Tolochko B.P., Vasiljev A.V., Zhogin I.L. // Nucl. Instrum. Methods Phys. Res. A. 2010. V. 623. Iss. 1. P. 600. https://www.doi.org/10.1016/j.nima.2010.03.083
  10. Ten K.A., Pruuel E.R., Merzhievsky L.A., Lukjanchikov L.A., Tolochko B.P., Zhogin I.L., Shekhtman L.I. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 603. Iss. 1. P. 160. https://www.doi.org/10.1016/j.nima.2008.12.192
  11. Titov V.M., Pruuél E.R., Ten K.A., Luk’yanchikov L.A., Merzhievskii L.A., Tolochko B.P., Zhulanov V.V., Shekhtman L.I. // Combustion, Explosion and Shock Waves. 2011. V. 47. № 6. P. 615. https://www.doi.org/10.1134/S0010508211060013
  12. Pruuel E.R., Ten K.A., Tolochko B.P., Merzhievskii L.A., Luk’yanchikov L.A., Aul’chenko V.M., Zhulanov V.V., Shekhtman L.I., Titov V.M. // Doklady Physics. 2013. V. 58. № 1. P. 24. https://www.doi.org/10.1134/S1028335813010035
  13. Ten K.A., Pruuel E.R., Kashkarov A.O., Rubtsov I.A., Antipov M.V., Georgievskaya A.B., Mikhailov A.L., Spirin I.A., Aulchenko V.M., Shekhtman L.I., Zhulanov V.V., Tolochko B.P. // Combustion, Explosion and Shock Waves. 2018. V. 54. № 5. P. 606. https://www.doi.org/10.1134/S0010508218050143
  14. Shekhtmana L.I., Aulchenko V.M., Kudryavtsev V.N., Kutovenko V.D., Titov V.M., Zhulanova V.V., Pruuel E.L., Ten K.A., Tolochko B.P. // Phys. Procedia. 2016. V. 84. P. 189. https://www.doi.org/10.1016/j.phpro.2016.11.033
  15. Aulchenko V., Pruuel E., Shekhtman L., Ten K., Tolochko B., Zhulanov V. // Nucl. Instrum. Methods Phys. Res. A. 2017. V. 845. P. 169. https://www.doi.org/10.1016/j.nima.2016.05.096
  16. Shekhtman L.I., Aulchenko V.M., Zhulanov V.V., Kudashkin D.V. // Bull. RAS: Phys. 2019. V. 83. № 2. P. 220. https://www.doi.org/10.3103/S1062873819020254
  17. Shekhtman L., Aulchenko V., Kudryavtsev V., Kutovenko V., Titov V., Zhulanov V. // AIP Conf. Proc. 2020. V. 2299. Iss. 1. P. 050004. https://www.doi.org/10.1063/5.0030393
  18. Shekhtman L., Aulchenko V., Kudashkin D., Kudryavtsev V., Pruuel E., Ten K., Tolochko B., Zhulanov V. // Nucl. Instrum. Methods Phys. Res. A. 2020. V. 958. P. 162655. https://www.doi.org/10.1016/j.nima.2019.162655
  19. Aulchenko V.M., Shekhtman L.I., Zhulanov V.V. // Optoelectronics, Instrumentation and Data Processing. 2020. V. 56. P. 81. https://www.doi.org/10.3103/S8756699020010112

© В.М. Аульченко, А.А. Глушак, В.В. Жуланов, А.Н. Журавлев, В.А. Киселев, В.Н. Кудрявцев, П.А. Пиминов, В.М. Титов, Л.И. Шехтман, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>