Сomposites with a Matrix Based on Niobium and Molybdenum Reinforced with Sapphire Fibers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Single-crystal sapphire fibers were obtained by the Stepanov method/EFG – Edge defined Film-fed Growth. The procedure for obtaining them is described. Mechanical testings of the fibers were carried out according to the presented scheme, and the dependences of the ultimate deformation and strength of the fibers on the length were determined. The dependences are power-law, and decrease with the length of the fibers. The strength of the obtained fibers corresponds to the world level and meets the conditions for their use as reinforcing for high-temperature composite materials. From workpieces containing layer-by-layer unidirectionally arranged sapphire fibers, niobium powder, metal foils of molybdenum and aluminum, layered-fibrous composites were obtained by solid-phase diffusion welding under load. Using scanning electron microscopy with X-ray analysis, the structure of the composites was studied, it was found that, in addition to the initial components, it includes intermetallic compounds of niobium, molybdenum and aluminum, as well as solid solutions of these metals formed in the technological process. As a result of mechanical testing of composite samples, deformation curves of load-deflection dependences were obtained, which, together with developed fracture surfaces, indicate the non-brittle nature of the fracture of composites containing brittle components. The dependences of the strength of composites on temperature in the range of 20–1400°C are obtained, which meet the requirements for high-temperature structural materials of this kind.

About the authors

V. M. Kiiko

Institute of Solid State Physics of Russian Academy of Sciences

Author for correspondence.
Email: kiiko@issp.ac.ru
Russia, 142432, Chernogolovka, Moscow Region

V. P. Korzhov

Institute of Solid State Physics of Russian Academy of Sciences

Email: kiiko@issp.ac.ru
Russia, 142432, Chernogolovka, Moscow Region

V. N. Kurlov

Institute of Solid State Physics of Russian Academy of Sciences

Email: kiiko@issp.ac.ru
Russia, 142432, Chernogolovka, Moscow Region

References

  1. Kelly A., Tyson W.R. // J. Mechanics Phys. Solids. 1965. V. 13. Iss. 6. P. 329. https://www.doi.org/10.1016/0022-5096(65)90035-9
  2. Келли A. // Наука – производству. 2007. № 2. С. 1.
  3. Милейко С.Т. // Наука – производству. 2007. № 2. С. 10.
  4. Karpov M.I., Vnukov V.I., Stroganova T.S., Prokhorov D.V., Zheltyakova I.S., Gnesin B.A., Kiiko V.M., Svetlov I.L. // Bull. RAS: Phys. 2019. V. 83. Iss. 10. P. 1235. https://doi.org/10.3103/S1062873819100113
  5. Свойства, получение и применение тугоплавких соединений / Ред. Косолапова Т.Я. и др. М.: Металлургия, 1986. 928 с.
  6. Милейко С.Т. // Композиты и наноструктуры. 2015. Т. 7. № 4. С. 191.
  7. Степанов А.В. Будущее металлообработки. Ленинград: Лениздат, 1963. 131 с.
  8. Chalmers B., LaBelle H.E., Jr., Mlavsky A.I. // J. Crystal Growth. 1972. V. 13/14. P. 84. https://www.doi.org/10.1016/0022-0248(72)90067-X
  9. LaBelle H.E.Jr., Mlavsky A.I. // Mater. Res. Bull. 1971. V. 6. Iss. 7. P. 571. https://www.doi.org/10.1016/0025-5408(71)90006-7
  10. Kurlov V.N., Stryukov D.O., Shikunova I.A. // J. Phys.: Conf. Series. 2016. V. 673. P. 012017. https://www.doi.org/10.1088/1742-6596/673/1/012017
  11. Shahinian P. // J. Am. Ceramic Soc. 1971. V 54. Iss. 1. P. 67. https://www.doi.org/10.1111/j.1151-2916.1971.tb12180.x
  12. Pollock J.T.A. // J. Mater. Sci. 1972. V. 7. P. 787. https://www.doi.org/10.1007/BF00549907
  13. Kurlov V.N., Mileiko S.T., Kolchin A.A., Starostin M.Yu., Kiiko V.M. // Crystallography Reports, Suppl. 1, 2002. V. 47. P. S53.
  14. Fitzgibbon J.J., Collins J.M. // Proc. SPIE. 1998. V. 3262. https://www.doi.org/10.1117/12.309487
  15. Kiiko V.M., Mileiko S.T. // Composites Sci. Technol. 1999. V. 59. Iss. 13. P. 1977. https://doi.org/10.1016/S0266-3538(99)00054-8
  16. Mileiko S.T // Recrystallization in Materials Processing / Ed. Glebovsky V. United Kingdom: IntechOpen Ltd., 2015. P. 125. https://www.doi.org/10.5772/61024
  17. Кийко В.М., Коржов В.П. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 11. С. 42. https://www.doi.org/107868/S0207352817110051
  18. Диаграммы состояния двойных металлических систем. Т. 1 / Ред. Лякишев Н.П. Москва: Машиностроение, 1996. 992 с.
  19. Гринберг Б.А., Иванов М.А. Интерметаллиды Ni3А1 и ТiАl: микроструктура, деформационнное поведение. Екатеринбург: УрО РАН, 2002. 360 с.
  20. Jackson M.R., Bewlay B.P., Rowe R.G., Skelly D.W., Lipsitt H.A. // J. Metals. 1996. V. 48. P. 39. https://doi.org/10.1007/BF03221361
  21. Bewlay B.P., Jackson M.R., Zhao J.C., Subramanian P.R. // Metallurgical and Materials Transactions A. 2003. V. 34A. № 10. P 2043. https://doi.org/10.1007/s11661-003-0269-8
  22. Светлов И.Л. // Материаловедение. 2010. № 9. С. 29.
  23. Светлов И.Л. // Материаловедение. 2010. № 10. С. 18.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (909KB)
3.

Download (71KB)
4.

Download (816KB)
5.

Download (736KB)
6.

Download (1MB)
7.

Download (81KB)

Copyright (c) 2023 В.М. Кийко, В.П. Коржов, В.Н. Курлов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies