Changes in the Energy of Surface Adsorption Sites of ZnO Doped with Sn

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nowadays an important task is the development of nanostructures of Zn–Sn–O ternary oxide system, which are of practical interest for various fields, including gas sensors and photocatalysts, lithium-ion batteries, and solar cells. Zinc stannate nanowires were formed by hydrothermal treatment of preliminary synthesized zinc oxide nanowires in a solution of potassium stannate and carbamide. Using scanning electron microscopy and backscattered electron diffraction, the samples were found to have a Zn2SnO4 structure, and their geometric dimensions did not change compared to the initial zinc oxide nanowires. The diameter of the obtained structures is about 300 nm, and the length is about 2 μm. According to X-ray photoelectron spectroscopy data, as a result of hydrothermal treatment, the surface structure changes, tin atoms are incorporated into the crystal structure of zinc oxide. A study of the gas-sensitive properties of the Zn2SnO4 layers have shown that they are more efficient in detecting isopropyl alcohol vapors compared to the initial zinc oxide nanowires. Zn2SnO4 layers allow detecting isopropyl alcohol vapors at temperatures of about 150°C. The sensor signal with respect to 1000 ppm C3H7OH is 3.79.

About the authors

Z. V. Shomakhov

Kabardino-Balkarian State University

Author for correspondence.
Email: shozamir@yandex.ru
Russia, 360004, Nalchik

S. S. Nalimova

Saint-Petersburg Electrotechnical University “LETI”

Author for correspondence.
Email: sskarpova@list.ru
Russia, 197022, Saint-Petersburg

V. M. Kondratev

Saint-Petersburg Electrotechnical University “LETI”; Moscow Institute of Physics and Technology

Email: sskarpova@list.ru
Russia, 197022, Saint-Petersburg; Russia, 141701, Dolgoprudny

A. I. Maksimov

Saint-Petersburg Electrotechnical University “LETI”

Email: sskarpova@list.ru
Russia, 197022, Saint-Petersburg

А. А. Ryabko

Ioffe Institute

Email: sskarpova@list.ru
Russia, 194021, Saint-Petersburg

V. A. Moshnikov

Saint-Petersburg Electrotechnical University “LETI”

Email: sskarpova@list.ru
Russia, 197022, Saint-Petersburg

O. A. Molokanov

Kabardino-Balkarian State University

Email: sskarpova@list.ru
Russia, 360004, Nalchik

References

  1. Ормонт Б.Ф. Введение в физическую химию и кристаллохимию полупроводников. М.: Высшая школа, 1982. 528 с.
  2. Сычев М.М., Минакова Т.С., Слижов Ю.Г., Шилова О.А. Кислотно-основные характеристики поверхности твердых тел и управление свойствами материалов и композитов. Санкт-Петербург: Химиздат, 2016. 276 с.
  3. Нечипоренко А.П. Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. Санкт-Петербург: Лань, 2017. 284 с.
  4. Arora I., Kumar P. // J. Alloys Compd. 2020. V. 845. P. 156316. https://doi.org/10.1016/j.jallcom.2020.156316
  5. Deevi K., Reddy V.K., Reddy I. // Mater. Lett. 2021. V. 283. P. 128848. https://doi.org/10.1016/j.matlet.2020.128848
  6. Santhoshkumar P., Prasanna K., Jo Y.N., Kang S.H., Joe Y.C., Lee C.W. // Appl. Surf Sci. 2018. V. 449. P. 514. https://doi.org/10.1016/j.apsusc.2018.01.120
  7. Levkevich E.A., Maksimov A.I., Kirillova S.A., Nalimova S.S., Kondrat’ev V.M., Semenova A.A. // Proc. 2020 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus 2020. St. Petersburg and Moscow, 27–30 January, 2020. P. 984. https://doi.org/10.1109/EIConRus49466.2020.9039451
  8. Jain S., Shah A.P., Shimpi N.G. // Nano-Struct. Nano-Objects. 2020. V. 21. P. 100410. https://doi.org/10.1016/j.nanoso.2019.100410
  9. Налимова С.С., Максимов А.И., Матюшкин Л.Б., Мошников В.А. // Физика и химия стекла. 2019. Т. 45. № 4. С. 311. https://doi.org/10.1134/S0132665119040097
  10. Das P.P., Roy A., Devi P.S. // Trans. Indian Ceram. Soc. 2016. V. 75. P. 147. https://doi.org/10.1080/0371750X.2016.1228482
  11. Hanh N.H., Van Duy L., Hung C.M., Duy N.V., Heo Y.-W., Hieu N.V., Hoa N.D. // Sensors Actuators. A. 2020. V. 302. P. 111834. https://doi.org/10.1016/j.sna.2020.111834
  12. Chen C., Li G., Li J., Liu Y. // Ceram. Int. 2015. V. 41. P. 1857. https://doi.org/10.1016/J.CERAMINT.2014.09.136
  13. Wang D., Pu X., Yu X., Bao L., Cheng Y., Xu J., Han S., Ma Q., Wang X. // J. Colloid Interface Sci. 2022. V. 608. P. 1074. https://doi.org/10.1016/j.jcis.2021.09.167
  14. Anikina M.A., Ryabko A.A., Nalimova S.S., Maximov A.I. // J. Phys.: Conf. Ser. 2021. V. 1851. P. 012010. https://doi.org/10.1088/1742-6596/1851/1/012010
  15. Kondratev V.M., Bolshakov A.D., Nalimova S.S. // Proc. 2021 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021. St. Petersburg, 26–29 January 2021. P. 1163. https://doi.org/10.1109/ElConRus51938.2021.9396573
  16. Рябко А.А., Максимов А.И., Вербицкий В.Н., Левицкий В.С., Мошников В.А., Теруков Е.И. // Физика и техника полупроводников. 2020. Т. 54. Вып. 11. С. 1251. https://doi.org/10.21883/FTP.2020.11.50098.9480
  17. Bobkov A., Varezhnikov A., Plugin I., Fedorov F.S., Goffman V., Sysoev V., Moshnikov V., Trouillet V., Geckle U., Sommer M. // Sensors. 2019. V. 19. № 19. P. 4265. https://doi.org/10.3390/s19194265
  18. Налимова С.С., Шомахов З.В., Пунегова К.Н., Рябко А.А., Максимов А.И. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2021. № 13. С. 910. https://doi.org/10.26456/pcascnn/2021.13.910
  19. Налимова С.С., Шомахов З.В., Мошников В.А., Бобков А.А., Рябко А.А., Калажоков З.Х. // Журн. технической физики. 2020. Т. 90. С. 1132. http://doi.org/10.21883/JTF.2020.07.49447.276-19
  20. Рябко А.А., Бобков А.А., Налимова С.С., Максимов А.И., Левицкий В.С., Мошников В.А., Теруков Е.И. // Журн. технической физики. 2022. Т. 92. Вып. 5. С. 758. https://doi.org/10.21883/JTF.2022.05.52382.314-21
  21. Nalimova S.S., Ryabko A.A., Maximov A.I., Moshnikov V.A. // J. Phys.: Conf. Ser. 2020. V. 1697. P. 012128. https://doi.org/10.1088/1742-6596/1697/1/012128
  22. Налимова С.С., Мошников В.А., Максимов А.И., Мякин С.В., Казанцева Н.Е. // Физика и техника полупроводников. 2013. Т. 47. Вып. 8. С. 1022. https://doi.org/10.1134/S1063782613080095
  23. Nalimova S.S., Bobkov A.A., Ryabko A.A., Maximov A.I., Moshnikov V.A., Shomakhov Z.V., Kalazhokov Z.K. // J. Phys.: Conf. Ser. 2020. V. 1658. P. 012034. http://doi.org/10.1088/1742-6596/1658/1/012034
  24. Yan S., Yu Y., Zheng W., Cao Y. // Physica E. 2019. V. 106. P. 57. https://doi.org/10.1016/j.physe.2018.10.011
  25. Yan S., He Z., Zhou G., Yu Y., Cao T. // Mater. Sci. Semicond. Process. 2021. V. 130. P. 105818. https://doi.org/10.1016/j.mssp.2021.105818
  26. Wang E., Yang W., Cao Y. // J. Phys. Chem. C. 2009. V. 113. P. 20912. https://doi.org/10.1021/jp9041793

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (624KB)
3.

Download (1MB)
4.

Download (82KB)
5.

Download (197KB)
6.

Download (108KB)

Copyright (c) 2023 З.В. Шомахов, С.С. Налимова, В.М. Кондратьев, А.И. Максимов, А.А. Рябко, В.А. Мошников, О.А. Молоканов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies