Sizing the EUV Laser-Plasma Source for a Microscope

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The size and intensity of laser-plasma sources based on pulsed argon gas jets operating at a wavelength of 13.84 nm were studied. The gas jet was excited by laser radiation at a wavelength of 1064 nm with a pulse duration of 4.4 ns, a repetition frequency of 10 Hz, and a pulse energy of 0.5 J. Two methods of forming a jet of a pulsed gas target were studied: using a jet with a supersonic nozzle and using a capillary. The capillary source is commercially available. The sources were certified using a mirror microscope operating in the extreme ultraviolet region at a wavelength of 13.84 nm. It was found that due to the possibility of supplying a higher pressure of the working gas to the nozzle inlet, increasing the density and reducing the exit angle of the gas jet in the supersonic nozzle compared to the capillary, the peak radiation intensity at a wavelength of 13.84 nm increased six times. The full width at half maximum of the nozzle-based source diameter was 250 ± 10 μm with a profile close to Gaussian. In the field of view of a microscope of 25 × 25 μm, the nonuniformity of illumination from the “source on the nozzle” is about 1%; in the field of view of 50 × 50 μm, it is about 4%. The full width at half maximum of the source diameter based on a commercial valve with a capillary source was 330 ± 10 µm with a profile close to П-shaped. Based on the results of the comparison, an upgraded version of the microscope with up to 350× magnification will use a nozzle-based source.

作者简介

D. Reunov

Institute of Physics of Microstructures, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: reunov_dima@ipmras.ru
Russia, 603950, Nizhny Novgorod

I. Malyshev

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: reunov_dima@ipmras.ru
Russia, 603950, Nizhny Novgorod

A. Perekalov

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: reunov_dima@ipmras.ru
Russia, 603950, Nizhny Novgorod

A. Nechay

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: reunov_dima@ipmras.ru
Russia, 603950, Nizhny Novgorod

N. Chkhalo

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: reunov_dima@ipmras.ru
Russia, 603950, Nizhny Novgorod

参考

  1. Janos K., Chris J., Malcolm H. // Quart. Rev. Biophys. 1995. V. 28. № 1. P. 33. https://doi.org/10.1017/s0033583500003139
  2. Kordel M., Dehlinger A., Seim C., Vogt U., Fogelqvist E., Sellberg J.A., Stiel H., Hertz H.M. // Optica. 2020. V. 7. № 6. P. 658. https://doi.org/10.1364/OPTICA.393014
  3. Michette G., Turcu I.C.E., Schulz M.S., Browne M.T., Morrison G.R., Fluck P., Buckley C.J., Foster G.F. // Rev. Sci. Instrum. 1993. V. 64. № 1. P. 1478. https://doi.org/10.1063/1.1144067
  4. Абраменко Д.Б., Анциферов П.С., Астахов Д.И. и др. // Успехи физических наук. 2019. Т. 189. № 3. С. 323. https://doi.org/10.3367/UFNr.2018.06.038447
  5. Wachulak P.W., Bartnik A., Fiedorowicz H., Rudawski P., Jarocki R., Kostecki J., Szczurek M. // Nucl. Instrum. Methods Phys. B. 2010. V. 268. № 10. P. 1692. https://doi.org/10.1016/j.nimb.2010.02.002
  6. Legall H., Blobel G., Stiel H. et al. // Optics Express. 2012. V. 20. № 16. P. 18362. https://doi.org/10.1364/OE.20.018362
  7. Martz D.H., Selin M., Hofsten O., Fogelqvist E., Holmberg A., Vogt U., Legall H., Blobel G., Seim C., Stiel H., Hertz H.M. // Opt. Lett. 2012. V. 37. № 21. P. 4425. https://doi.org/10.1364/OL.37.004425
  8. Borisov V.M., Koshelev K.N., Prokofiev A.V., Khadzhiyskiy F.Yu., Khristoforov O.B. // Quantum Electronics. 2014. V. 44. № 11. P. 1077. https://doi.org/10.1070/QE2014v044n11ABEH015611
  9. Vodopyanov A.V., Golubev S.V., Mansfeld D.A., Nikolaev A.G., Savkin K.P., Salashchenko N.N., Chkhalo N.I., Yushkov G.Yu. // JETP Lett. 2008. V. 88. № 2. P. 95. https://doi.org/10.1134/S0021364008140051
  10. Bartni A., Fiedorowicz H., Jarocki R., Kostecki J., Rakowski R., Szczurek M. // Proc. SPIE. 2005. V. 5958. P. 279. https://doi.org/10.1117/12.622119
  11. Torrisi A., Wachulak P., Węgrzyński L., Fok T., Bartnik A., Parkman T., Vondrová S., Turňová J., Jankiewicz B.J., Bartosewicz B., Fiedorowicz H. // J. Microscopy. 2017. V. 265. № 2. P. 251. https://doi.org/10.1111/jmi.12494
  12. Fiedorowicz H., Bartnik A., Szczurek M., Daido H., Sakaya N., Kmetik V., KatoY., Suzuki M., Matsumura M., Tajima J., Nakayama T., Wilhein T. // Opt. Commun. 1999. V. 163. № 1–3. P. 103. https://doi.org/10.1016/s0030-4018(99)00100-5
  13. Гусева В.Е., Нечай А.Н., Перекалов А.А., Салащенко Н.Н., Чхало Н.И. // Оптика и спектроскопия. 2022. Т. 130. Вып. 2. С. 217. https://doi.org/10.21883/OS.2022.02.51986.2771-21
  14. Нечай А.Н., Перекалов А.А., Чхало Н.И., Салащенко Н.Н., Забродин И.Г., Каськов И.А., Пестов А.Е. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 9. С. 83. https://doi.org/10.1134/S0207352819090099
  15. Masayuki S., Hiroyuki D., Woo C.I., Wei Y., Keiji N., Takayoshi N., Kunioki M., Fiedorowicz H. // Phys. Plasmas. 2003. V. 10. № 1. P. 227. https://doi.org/10.1063/1.1526700
  16. Wieland M., Wilhein T., Faubel M., Ellert Ch., Schmidt M., Sublemontier O. // Appl. Phys. B. 2001. V. 72. № 5. P. 591. https://doi.org/10.1007/s003400100542
  17. Fiedorowicz H., Bartnik A., Patron Z., Parys P. // Appl. Phys. Lett. 1993. V. 62. № 22. P. 2778. https://doi.org/10.1063/1.109232
  18. Holburg J., Müller M., Mann K., Wieneke S. // J. Vacuum Sci. Technol. A. 2019. V. 37. № 3. P. 031303. https://doi.org/10.1116/1.5089201
  19. NIST Atomic Spectra Database, Gaithersburg, 2009–2019. https://www.nist.gov/pml/atomic-spectra-database.
  20. Kelly R.L., Palumbo L.J. // Atomic and Ionic Emission Lines below 2000 Angstroms: Hydrogen through Krypton. Naval Research Lab. Washington, DC (USA), 1973. № NRL-7599.
  21. Нечай А.Н., Перекалов А.А., Салащенко Н.Н., Чхало Н.И. // Оптика и спектроскопия. 2021. Т. 129. № 2. С. 146. https://doi.org/10.21883/OS.2021.02.50551.243-20
  22. Малышев И.В., Пестов А.Е., Полковников В.Н. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 1. С. 3. https://doi.org/10.1134/S0207352819010128
  23. Malyshev I.V., Chkhalo N.I. // Ultramicroscopy 2019. V. 202. P. 76. https://doi.org/10.1016/j.ultramic.2019.04.001
  24. Wachulak P., Bartnik A., Fiedorowicz H. // Proc. SPIE. 2019. V. 11076. P. 1107606. https://doi.org/10.1117/12.2526737
  25. Berglund M., Rymell L., Peuker M., Wilhein T., Hertz H.M. // J. Microscopy. 2000. V. 197. № 3. P. 268. https://doi.org/10.1046/j.1365-2818.2000.00675.x
  26. Pereiro E., Nicolaś J., Ferrer S., Howells M.R. // J. Synchrotron Radiat. 2009. V. 16. № 4. P. 505. https://doi.org/10.1107/S0909049509019396
  27. Kim K.W., Kwon Y., Nam K.Y. et al. // Phys. Med. Biol. 2006. V. 51. № 6. P. 99. https://doi.org/10.1088/0031-9155/51/6/N01
  28. Hertz H.M., Hofsten O., Bertilson M., Vogt U., Holmberg A., Reinspach J., Martz D., Selin M., Christakou A.E., Jerlström-Hultqvist J., Svärd S. // J. Struct. Biol. 2012. V. 177. № 2. P. 267. https://doi.org/10.1016/j.jsb.2011.11.015
  29. https://www.gpixel.com/.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (126KB)
3.

下载 (96KB)
4.

下载 (241KB)
5.

下载 (91KB)

版权所有 © Д.Г. Реунов, И.В. Малышев, А.А. Перекалов, А.Н. Нечай, Н.И. Чхало, 2023

##common.cookie##