Operando дифракционное исследование Mn–Ce катализаторов окисления СО

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом соосаждения приготовлена серия MnOx–CeO2 катализаторов с мольным соотношением Mn : Ce = 3 : 7 при варьировании температуры прокаливания от 300 до 800°С. Катализаторы были охарактеризованы методами порошковой рентгеновской дифракции, низкотемпературной адсорбции азота, рентгеновской фотоэлектронной спектроскопии, а также была протестирована каталитическая активность в реакции окисления СО всех образцов. Показано, что во всех катализаторах образуется твердый раствор (Mn,Ce)O2 со структурой флюорита. На основании проведенных исследований был выбран катализатор, полученный при температуре прокаливания 600°С, для дальнейших исследований эффекта влияния топохимического восстановления на каталитическую активность в реакции окисления СО методом рентгеновской дифракции в режиме operando. Эксперимент проходил последовательно в пошаговом режиме: ступенчатый нагрев/охлаждение в реакционной смеси 1% СО + 2% О2 в режиме 150–175–200–175–150°С (этапы 1, 3 и 5); восстановление образца в смеси 10% СО + He при 400°С (этап 2); восстановление образца в смеси 10% Н2 + He при 400°С (этап 4). Было показано, что восстановительная обработка приводит к расслоению исходного твердого раствора (Mn,Ce)O2 и появлению дисперсных оксидов марганца на поверхности, обогащение поверхности оксидом марганца приводит к увеличению активности в реакции окисления СО.

Об авторах

З. С. Винокуров

Институт катализа им. Г.К. Борескова СО РАН; Центр коллективного пользования “СКИФ” Институт катализа им. Г.К. Борескова

Автор, ответственный за переписку.
Email: vinokurovzs@catalysis.ru
Россия, 630090, Новосибирск; Россия, 630559, Кольцово

Т. Н. Афонасенко

Центр новых химических технологий Института катализа им. Г.К. Борескова СО РАН

Email: vinokurovzs@catalysis.ru
Россия, 630090, Омск

Д. Д. Мищенко

Институт катализа им. Г.К. Борескова СО РАН; Центр коллективного пользования “СКИФ” Институт катализа им. Г.К. Борескова

Email: vinokurovzs@catalysis.ru
Россия, 630090, Новосибирск; Россия, 630559, Кольцово

А. А. Сараев

Институт катализа им. Г.К. Борескова СО РАН; Центр коллективного пользования “СКИФ” Институт катализа им. Г.К. Борескова

Email: vinokurovzs@catalysis.ru
Россия, 630090, Новосибирск; Россия, 630559, Кольцово

Е. Е. Айдаков

Институт катализа им. Г.К. Борескова СО РАН

Email: vinokurovzs@catalysis.ru
Россия, 630090, Новосибирск

В. А. Рогов

Институт катализа им. Г.К. Борескова СО РАН

Email: vinokurovzs@catalysis.ru
Россия, 630090, Новосибирск

О. А. Булавченко

Институт катализа им. Г.К. Борескова СО РАН

Email: vinokurovzs@catalysis.ru
Россия, 630090, Новосибирск

Список литературы

  1. Kousi K., Tang C., Metcalfe I.S. et al. // Small. 2021. V. 17. № 21. P. 2006479. https://www.doi.org/10.1002/smll.202006479.2
  2. Neagu D., Tsekouras G., Miller D.N. et al. // Nature Chem. 2013. V. 5. № 11. P. 916. https://www.doi.org/10.1038/nchem.1773
  3. Chanthanumataporn M., Hui J., Yue X. et al. // Electrochimica Acta. 2019. V. 306. P. 159. https://www.doi.org/10.1016/j.electacta.2019.03.126
  4. Tan J., Lee D., Ahn J. et al. // J. Mater. Chem. A. 2018. V. 6. № 37. P. 18133. https://www.doi.org/10.1039/C8TA05978K
  5. Otto S.-K., Kousi K., Neagu D. et al. // ACS Appl. Energy Mater. 2019. V. 2. № 10. P. 7288. https://www.doi.org/10.1021/acsaem.9b01267
  6. Myung J., Neagu D., Miller D.N. et al. // Nature. 2016. V. 537. № 7621. P. 528. https://www.doi.org/10.1038/nature19090
  7. Neagu D., Oh T.-S., Miller D.N. et al. // Nat. Commun. 2015. V. 6. № 1. P. 8120. https://www.doi.org/10.1038/ncomms9120
  8. Nishihata Y., Mizuki J., Akao T. et al. // Nature. 2002. V. 418. № 6894. P. 164. https://www.doi.org/10.1038/nature00893
  9. Bulavchenko O.A., Vinokurov Z.S., Afonasenko T.N. et al. // Dalton Trans. 2015. V. 44. № 35. P. 15499. https://www.doi.org/10.1039/C5DT01440A
  10. Bulavchenko O.A., Vinokurov Z.S., Afonasenko T.N. et al. // Mater. Lett. 2020. V. 258. P. 126768. https://www.doi.org/10.1016/j.matlet.2019.126768
  11. Bulavchenko O.A., Vinokurov Z.S., Afonasenko T.N. et al. // Mater. Lett. 2022. V. 315. P. 131961. https://www.doi.org/10.1016/j.matlet.2022.131961
  12. Gates-Rector S., Blanton T. // Powder Diffr. 2019. V. 34. № 4. P. 352. https://www.doi.org/10.1017/S0885715619000812
  13. Lutterotti L. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 3–4. P. 334. https://www.doi.org/10.1016/j.nimb.2009.09.053
  14. Qi G., Yang R.T. // J. Phys. Chem. B. 2004. V. 108. № 40. P. 15738. https://www.doi.org/10.1021/jp048431h
  15. Frey K., Iablokov V., Sáfrán G., Osán J. et al. // J. Catalysis. 2012. V. 287. P. 30. https://www.doi.org/10.1016/j.jcat.2011.11.014
  16. Feng G., Han W., Wang Z. et al. // Catalysts. 2018. V. 8. № 11. P. 535. https://www.doi.org/10.3390/catal8110535
  17. Zhang L., Spezzati G., Muravev V. et al. // ACS Catal. 2021. V. 11. № 9. P. 5614. https://www.doi.org/10.1021/acscatal.1c00564
  18. Watanabe S., Ma X., Song C. // J. Phys. Chem. C. 2009. V. 113. № 32. P. 14249. https://www.doi.org/10.1021/jp8110309
  19. Stobbe E.R., de Boer B.A., Geus J.W. // Catalysis Today. 1999. V. 47. № 1–4. P. 161. https://www.doi.org/10.1016/S0920-5861(98)00296-X
  20. Lee S.M., Park K.H., Kim S.S. et al. // J. Air Waste Management Association. 2012. V. 62. № 9. P. 1085. https://www.doi.org/10.1080/10962247.2012.696532

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (86KB)
3.

Скачать (89KB)
4.

Скачать (226KB)
5.

Скачать (194KB)

© З.С. Винокуров, Т.Н. Афонасенко, Д.Д. Мищенко, А.А. Сараев, Е.Е. Айдаков, В.А. Рогов, О.А. Булавченко, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах