Resonance Effects in Photoemission Spectroscopy of Rare-Earths in Intermetallic Compound La0.73Tb0.27Mn2Si2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electronic structure of the rare-earth intermetallic compound La0.73Tb0.27Mn2Si2 has been studied by resonant photoemission spectroscopy using synchrotron radiation, and its formation patterns have been established upon partial replacement of lanthanum atoms by terbium. The dependence of the valence band spectra shape on the photon energy near the absorption edges of the internal levels of manganese, lanthanum, and terbium is analysed. The processes of direct and two-stage production of photoelectrons, elastic and inelastic decay channels of these states with the emission of high-energy electrons due to intra-atomic Coulomb interaction have been studied. The dominant mechanisms of the decay of the excited states of the components under study were determined from the shapes of the spectra. For rare-earth metals elastic decay channel of the excited state is the most probable, while for manganese, it is inelastic, with the formation of a second hole in the valence band with subsequent enhancement of photoemission. Exciting photoemission near M5-absorption edges of rare-earth elements, the main contribution to the valence band comes from terbium 4f-states. Exciting photoemission near L3-absorption edge of manganese, the main contribution to the valence band is made by manganese 3d-states; with an increase in the photon energy in the region after resonance, an Auger channel for the decay of the excited state arises in the form of intensity maximum shift towards the binding energy growth. Features of the topography and magnetic domain structure of the La0.73Tb0.27Mn2Si2 surface were studied by atomic force and magnetic force microscopy at room temperature.

About the authors

E. A. Ponomareva

M.N. Miheev Institute of Metal Physics UB RAS

Author for correspondence.
Email: ponomareva@imp.uran.ru
Russia, 620108, Ekaterinburg

Yu. V. Korkh

M.N. Miheev Institute of Metal Physics UB RAS

Email: kuznetsovaups@mail.ru
Russia, 620108, Ekaterinburg

V. I. Grebennikov

M.N. Miheev Institute of Metal Physics UB RAS; Ural State University of Railway Transport

Email: kuznetsovaups@mail.ru
Russia, 620108, Ekaterinburg; Russia, 620034, Ekaterinburg

E. G. Gerasimov

M.N. Miheev Institute of Metal Physics UB RAS; Ural Federal University

Email: kuznetsovaups@mail.ru
Russia, 620108, Ekaterinburg; Russia, 620002, Ekaterinburg

N. V. Mushnikov

M.N. Miheev Institute of Metal Physics UB RAS; Ural Federal University

Email: kuznetsovaups@mail.ru
Russia, 620108, Ekaterinburg; Russia, 620002, Ekaterinburg

T. V. Kuznetsova

M.N. Miheev Institute of Metal Physics UB RAS; Ural Federal University

Author for correspondence.
Email: kuznetsovaups@mail.ru
Russia, 620108, Ekaterinburg; Russia, 620002, Ekaterinburg

References

  1. Szytula A., Lecieijewicz J. Handbook on Physics and Chemistry of Rare Earths, V. 12 / Ed. Gschneidner K.A., Jr., Eyring L. Amsterdam: North Holland, 1989.
  2. lvanov V., Szytula A. // J. Alloys Compd. 1997. V. 262–263. P. 253. https://www.doi.org/10.1016/S0925-8388(97)00392-7
  3. Kolmakova N.P., Sidorenko A.A., Levitin R.Z. // Low Temp. Phys. 2002. V. 28. № 8. P. 653. https://www.doi.org/10.1063/1.1511711
  4. Miloud Abid O., Yakoubi A., Tadjer A., Khenata R., Ahmed R., Murtaza G., Bin Omran S., Sikander Azam // J. Alloys Compd. 2014. V. 616. P. 475. https://www.doi.org/10.1016/j.jallcom.2014.07.146
  5. Gerasimov E.G., Mushnikov N.V., Goto T. // Phys. Rev. B. 2005. V. 72. P. 064446. https://www.doi.org/10.1103/PhysRevB.72.064446
  6. Gerasimov E.G., Dorofeev Yu.A., Gaviko V.S., Pirogov A.N., Teplykh A.E., Park J., Park J.G., Choi C.S., Kong U. // Phys. Met. Metallogr. 2002. V. 94. № 2. P. 161.
  7. Gerasimov E.G., Gaviko V.S., Neverov V.N., Korolyov A.V. // J. Alloys Compd. 2002. V. 343. P. 14. https://www.doi.org/10.1016/S0925-8388(02)00110-X
  8. Bhowmik T.K. // Phys. Lett. A. 2021. V. 419. P. 127724. https://www.doi.org/10.1016/j.physleta.2021.127724
  9. Dos Reis D.C., França E.L.T., de Paula V.G., dos Santos A.O., Coelho A.A., Cardoso L.P., da Silva L.M. // J. Magn. Magn. Mater. 2017. V. 424. P. 84. https://www.doi.org/10.1016/j.jmmm.2016.10.019
  10. Engdahl G., Handbook of giant magnetostrictive materials / Ed. Mayergoyz I. N.Y.: Academic Press, 1999.
  11. Gschneidner Jr.K.A., Pecharsky V.K., Tsokol A.O. // Rep. Progr. Phys. 2005. V. 68. P. 1479. https://www.doi.org/10.1088/0034-4885/68/6/R04
  12. Molodtsov S.L., Kucherenko Yu., Hinarejos J.J., Danzenbӓcher S., Servedio V.D.P., Richter M., Laubschat C. // Phys. Rev. B. 1999. V. 60. P. 16435. https://www.doi.org/10.1103/PhysRevB.60.16435
  13. Hofmann M., Campbell S.J., Kennedy S.J., Zhao X.L. // J. Phys.: Cond. Matter. 2001. V. 13. P. 9773. https://www.doi.org/10.1088/0953-8984/13/43/308
  14. Di Napoli S., Llois A.M., Bihlmayer G., Blugel S., Alouani M., Dreyssé H. // Phys. Rev. B. 2004. V. 70. P. 174418. https://www.doi.org/10.1103/Phys. Rev. B.70.174418
  15. Gerasimov E.G., Kurkin M.I., Korolyov A.V., Gaviko V.S. // Physica B. 2002. V. 322. P. 297. https://www.doi.org/10.1016/S0921-4526(02)01196-1
  16. Hofmann M., Campbell S.J., Knorr K., Hull S., Ksenofontov V. // J. Appl. Phys. 2002. V. 91. P. 8126. https://www.doi.org/10.1063/1.1456433
  17. Yablonskikh M.V., Yarmoshenko Yu.M., Gerasimov E.G., Gaviko V.S., Korotin M.A., Kurmaev E.Z., Bartkowski S., Neumann M. // J. Magn. Magn. Mater. 2003. V. 256. P. 369. https://www.doi.org/10.1016/S0304-8853(02)00974-5
  18. Kuznetsova T.V., Korkh Yu.V., Grebennikov V.I., Radzivonchik D.I., Ponomareva E.A., Gerasimov E.G., Mushnikov N.V. // Phys. Met. Metallogr. 2022. V. 123. № 5. P. 451. https://www.doi.org/10.1134/S0031918X22050064
  19. Kazakova O., Puttock R., Barton C., Corte-León H., Jaafar M., Neu V., Asenjo A. // J. Appl. Phys. 2019. V. 125. P. 060901. https://www.doi.org/10.1063/1.5050712
  20. Cheong S.-W., Fiebig M., Wu W., Chapon L., Kiryukhin V. // NPJ Quantum Mater. 2020. V. 5. № 3. P. 1. https://www.doi.org/10.1038/s41535-019-0204-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (215KB)
4.

Download (209KB)

Copyright (c) 2023 Е.А. Пономарева, Ю.В. Корх, В.И. Гребенников, Е.Г. Герасимов, Н.В. Мушников, Т.В. Кузнецова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies