Spin-Orbit Interactions in Osmium Complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Osmium compounds with the Os5d4 electron configuration and an octahedral environment of neighboring atoms attract much attention due to the influence of the spin-orbit interaction on the appearance of magnetic properties in materials. XANES spectroscopy makes it possible to obtain information about the magnitude of the spin-orbit interaction from measuring the intensity ratio of lines near the absorption edges. The influence of the spin-orbit interaction on the XANES OsL2,3 spectra in osmium compounds having an octahedral halogen environment of osmium atoms has been studied. Two types of systems have been investigated: isolated osmium clusters in complex compounds and OsCl4 compound containing polymeric chains of Os connected by bridging Cl atoms. Magnetic susceptibility measurements show a non-magnetic ground state and Van Vleck paramagnetism in the case of isolated clusters and a non-zero magnetic moment over the entire temperature range in OsCl4. As a result of measurements of the XANES spectra, high values of the line intensity ratio near the OsL3/L2 absorption edges have been obtained, which is associated with a strong influence of the spin-orbit interaction on the electronic structure. Theoretical analysis of the XANES spectra of Os compounds with different ligands and outer-sphere cations shows that the electronic structure and magnetic properties depend on the spin-orbit interaction, the crystal field splitting, the electron pairing energy, and non-cubic distortions of the Os environment.

About the authors

I. P. Asanov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS

Author for correspondence.
Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

A. D. Fedorenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS

Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

D. B. Vasilchenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS

Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

M. A. Grebenkina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS

Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

A. N. Lavrov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS

Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

I. V. Korol’kov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS

Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

V. V. Kriventsov

Federal Research Center Boreskov Institute of Catalysis

Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

S. V. Trubina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS

Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

T. I. Asanova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS

Email: asan@niic.nsc.ru
Russia, 630090, Novosibirsk

References

  1. Martins C., Aichhorn M., Biermann S. // J. Phys.: Condens. Matter. 2017. V. 29. P. 263001. https://doi.org/10.1088/1361-648X/aa648f
  2. Gotfryd D., Paerschke E.M., Chaloupka J., Oles A.M., Wohlfeld K. // Phys. Rev. Res. 2020. V. 2. P. 013353. https://doi.org/10.1103/PhysRevResearch.2.013353
  3. Khomskii D.I., Streltsov S.V. // Chem. Rev. 2021. V. 121. P. 2992. https://doi.org/10.1021/acs.chemrev.0c00579
  4. Kim B.J., Jin H., Moon S.J., Kim J.-Y., Park B.-G., Leem C.S., Yu J., Noh T.W., Kim C., Oh S.-J., Park J.-H., Durairaj V., Cao G., Rotenberg E. // Phys. Rev. Lett. 2008. V. 101. P. 076402. https://doi.org/10.1103/PhysRevLett.101.076402
  5. Jackeli G., Khaliullin G. // Phys. Rev. Lett. 2009. V. 102. P. 017205. https://doi.org/10.1103/PhysRevLett.102.017205
  6. Khaliullin G. // Phys. Rev. Lett. 2013. V.111. P. 197201. https://doi.org/10.1103/PhysRevLett. 111.197201
  7. Синтез комплексных соединений металлов платиновой группы. Справочник / Ред. Черняев И.И. М.: Наука, 1964. 340 с.
  8. Громилов С.А., Коренев С.В., Храненко С.П., Алексеев В.И. // ЖСХ. 1997. Т. 38. № 1. С. 120. https://doi.org/10.1007/BF02768813
  9. Губанов А.И., Коренев С.В., Громилов С.А., Байдина И.А., Венедиктов А.Б. // ЖСХ. 2000. Т. 41. № 2. С. 417. https://doi.org/10.1007/BF02741603
  10. Корольков И.В., Губанов А.И., Юсенко К.В., Байдина И.А., Громилов С.А. // ЖСХ. 2007. Т. 48. № 3. С. 530. https://doi.org/10.1007/s10947-007-0073-1
  11. Колбин Н.И., Семенов И.Н., Шутов Ю.М. // ЖНХ. 1963. Т. 8. № 11. С. 2422.
  12. Powder Diffraction File (2022) International Centre for Diffraction Data, Pennsylvania, USA.
  13. Clancy J.P., Chen N., Kim C.Y., Chen W.F., Plumb K.W., Jeon B.C., Noh T.W., Kim Y.-J. // Phys. Rev. B. 2012. V. 86. P. 195131. https://doi.org/10.1103/PhysRevB.86.195131
  14. Bunau O., Joly Y. // J. Phys.: Condens. Matter. 2009. V. 21. P. 345501. https://doi.org/10.1088/0953-8984/21/34/345501
  15. Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. P. e1327. https://doi.org/10.1002/wcms.1327
  16. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A
  17. Stoychev G.L., Auer A.A., Neese F. // J. Chem. Theory Comput. 2017. V. 13. P. 554. https://doi.org/10.1021/acs.jctc.6b01041
  18. Noro T., Sekiya M., Koga T. // Theo. Chem. Acc. 2013. V. 132. P. 1363. https://doi.org/10.1007/s00214-013-1363-7
  19. Hess B.A. // Phys. Rev. A. 1986. V. 33. P. 3742. https://doi.org/10.1103/PhysRevA.33.3742
  20. Angeli C., Cimiraglia R., Malrieu J.-P. // Chem. Phys. Lett. 2001. V. 350. P. 297. https://doi.org/10.1016/S0009-2614(01)01303-3
  21. Ganyushin D., Neese F. // J. Chem. Phys. 2013. V. 138. P. 104113. https://doi.org/10.1063/1.4793736
  22. Kohlmann H. // Z. Anorg. Allg. Chem. 2022. V. 648. P. e202100375. https://doi.org/10.1002/zaac.202100375
  23. Ivlev S.I., Malin A.V., Karttunen A.J., Ostvald R.V., Kraus F. // J. Fluorine Chem. 2019. V. 218. P. 11. https://doi.org/10.1016/j.jfluchem.2018.11.010
  24. Asanova T.I., Asanov I.P., Yusenko K.V., La Fontaine C., Gerasimov E.Yu., Zadesenets A.V., Korenev S.V. // Mat. Res. Bull. 2021. V. 144. P. 111511. https://doi.org/10.1016/j.materresbull.2021.111511
  25. Громилов С.А., Шубин Ю.В., Губанов А.И., Максимовский Е.А., Коренев С.В. // ЖСХ. 2009. Т. 50. № 6. С. 1174. https://doi.org/10.1007/s10947-009-0164-2
  26. Габуда С.П., Гагаринский Ю.В., Полищук С.А. ЯМР в неорганических фторидах, структура и химическая связь. М.: Атомиздат, 1978. 208 с.
  27. Machmer P. // Z. Naturforsch. B. 1969. V. 24. P. 200. https://doi.org/10.1515/znb-1969-0209
  28. Cotton F.A., Rice C.E. // Inorg. Chem. 1977. V. 16. P. 1865. https://doi.org/10.1021/ic50174a008
  29. Асанова Т.И., Асанов И.П., Ким М.-Г., Коренев С.В. // ЖСХ. 2017. Т. 58. № 5. С. 936. https://doi.org/10.1134/S0022476617050079
  30. Asanova T., Asanov I., Zadesenets A., Filatov E., Plyusnin P., Gerasimov E., Korenev S. // J. Therm. Anal. Calorim. 2016. V. 123. P. 1183. https://doi.org/10.1007/s10973-015-5002-5
  31. Nefedov V.I. // J. Electron Spectrosc. Relat. Phen. 1977. V. 12. P. 459. https://doi.org/10.1016/0368-2048(77)85097-4
  32. Falconer W.E., Disalvo F.J., Griffiths J.E., Stevie F.A., Sunder W.A., Vasile M.J. // J. Fluor. Chem. 1975. V. 6. № 6. P. 499. https://doi.org/10.1002/chin.197604027
  33. Blundell S. Magnetism in Condensed Matter. Oxford: Oxford University Press, 2001. 238 p.
  34. Paramekanti A., Singh D.J., Yuan B., Casa D., Said A., Kim Y.-J., Christianson A.D. // Phys. Rev. B. 2018. V. 97. P. 235119.https://doi.org/10.1103/PhysRevB.97.235119
  35. Stamokostas G.L., Fiete G.A. // Phys. Rev. B. 2018. V. 97. P. 085150. https://doi.org/10.1103/PhysRevB.97.085150

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (69KB)
3.

Download (222KB)
4.

Download (287KB)
5.

Download (195KB)

Copyright (c) 2023 И.П. Асанов, А.Д. Федоренко, Д.Б. Васильченко, М.А. Гребенкина, А.Н. Лавров, И.В. Корольков, В.В. Кривенцов, С.В. Трубина, Т.И. Асанова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies