Crystallographic Texture and Functional Properties of Powder Titanium Alloys after Thermomechanical Treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A relationship has been established between the crystallographic texture developed during various thermomechanical treatments and the functional properties of titanium-based alloys, in particular, titanium nickelide obtained by sintering calcium hydride powder. Thermomechanical treatment of sintered workpieces was carried out by rotary forging, radial shear rolling, or extrusion. The temperature of the last stage of deformation in all cases was 900°C. The neutron diffraction analysis of the samples was performed on a texture diffractometer SKAT at JINR (Dubna, Russia). The projection plane of the experimental pole figures was perpendicular to the sample axis and the deformation axis. The shape memory characteristics were determined by torsion deformation on wire samples cut from rods along the axis. The texture is most fully demonstrated by the sample after extrusion: the volume fraction of textured grains reaches 85%, and the maximum pole density is 2.76 m.r.d. (multiple of a random distribution). The functional properties under torsion deformation γstr = 2–16% are studied. Extruded samples and samples subjected to radial shear rolling demonstrate the best superelasticity in the austenitic phase γsuperеlast = 15% and maximum values of critical stresses γcr = 15%, starting from which the deformation becomes irreversible. A relationship between the sharpness of the crystallographic texture and the functional properties of the TiNi alloy after thermomechanical treatment has been revealed.

About the authors

G. V. Markova

Tula State University

Author for correspondence.
Email: galv.mark@rambler.ru
Russia, 300012, Tula

T. I. Ivankina

Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research

Author for correspondence.
Email: iti@jinr.ru
Russia, 141980, Dubna

D. M. Levin

Tula State University

Email: volodko.sv@yandex.ru
Russia, 300012, Tula

S. S. Volodko

Tula State University

Author for correspondence.
Email: volodko.sv@yandex.ru
Russia, 300012, Tula

References

  1. Bronkhorst C.A., Kalidindi S.R., Anand L. // Textures and Microstructures. 1991. V. 14–18. P. 1031.
  2. Stanford N., Dunne D.P. // Mater. Sci. Eng. A. 2006. 422. Iss. 1–2. P. 352. https://doi.org/10.1016/j.msea.2006.02.009
  3. Arabi-Hashemi A., Lee W.J., Leinenbach C. // Mater. Design. 2018. V. 139. P. 258. https://doi.org/10.1016/j.matdes.2017.11.006
  4. Исаенкова М.Г., Перлович Ю.А., Фесенко В.А., Зарипова М.М. // Челяб. физ.-мат. журн. 2019. Т. 4. Вып. 2. С. 221. https://doi.org/10.24411/2500-0101-2019-14209
  5. Пушин В.Г., Прокошкин С.Д., Валиев Р.З. и др. Сплавы никелида титана с памятью формы. Ч. 1. Структура, фазовые превращения и свойства. / Ред. Пушин В.Г. Екатеринбург: УРО РАН, 2006. 439 с.
  6. Yang Y., Zhan J.B., Sun Z.Z. et al. // J. Alloys Compd. 2019. V. 804. P. 220. https://doi.org/10.1016/j.jallcom.2019.06.340
  7. Liu Y., Xie Z.L., Van Humbeeck J., Delaey L. // Acta Mater. 1999. V. 47. № 2. P. 645. https://doi.org/10.1016/S1359-6454(98)00376-0
  8. Хачин В.Н. Пушин В.Г., Кондратьев В.В. Никелид титана. Структура и свойства. М.: Наука, 1992. 160 с.
  9. Касимцев А.В., Левинский Ю.В. Гидридно-кальциевые порошки металлов, интерметалидов, тугоплавких соединений и композиционных материалов. М.: Изд-во МИТХТ, 2012. 247 с.
  10. Касимцев А.В., Маркова Г.В., Шуйцев А.В. и др. // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2014. № 3. С. 31. https://doi.org/10.17073/1997-308X-2014-3-31-37
  11. Kasimtsev A.V., Markova G.V., Volodko S.S. et al. // Russ. Metallurgy (Metally). 2020. V. 2020. № 11. P. 1267. https://doi.org/10.1134/S0036029520110087
  12. Ullemeyer K., Spalthoff P., Heinitz J., Isakov N.N., Nikitin A.N., Weber K. // Nucl. Instrum. Methods Phys. Res. A. 1998. V. 412. № 1. P. 80. https://doi.org/10.1016/S0168-9002(98)00340-4
  13. Патент № 92 538 (РФ). МПК8 G01N 3/38. Устройство для измерения параметров восстановления формы в материалах / Архангельский С.И., Лабзова Л.В., Маркова Г.В., Чуканов И.В. // Б.И. 2010. № 8.
  14. Маркова Г.В., Касимцев А.В., Володько С.С., Алимов И.А. // Цветные металлы. 2018. № 12. С. 75. https://doi.org/10.17580/tsm.2018.12.11
  15. Bunge H.-J. Texture Analysis in Materials Science: Mathematical Methods. London: Butterworth–Heinemann, 1982. 595 p.
  16. Ivankina T.I., Matthies S. // Phys. Particles Nucl. 2015. V. 46. № 3. P. 366. https://doi.org/10.1134/S1063779615030077
  17. Shen J., Hu L.P., Zhu T.J., Zhao X.B. // Appl. Phys. Lett. 2011. V. 99. P. 124102. https://doi.org/10.1063/1.3643051
  18. Yan X., Poudel B., Ma Y. et al. // Nano Lett. 2010. V. 10. P. 3373. https://doi.org/10.1021/nl101156v
  19. Xie W., He J., Zhu S. et al. // J. Mater. Res. 2011. V. 26. Iss. 15. P. 1791. https://doi.org/10.1557/jmr.2011.170
  20. Шинаев А.А. Механизм деформации сплавов на основе титана и никелида титана и его влияние на характеристики эффекта запоминания формы: Дис. … канд. тех. наук: 05.02.01. М.: МГАТУ им. К.Э. Циолковского, 1999. 177 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (31KB)
3.

Download (90KB)
4.

Download (1006KB)
5.

Download (149KB)
6.

Download (69KB)
7.

Download (59KB)

Copyright (c) 2023 Г.В. Маркова, Т.И. Иванкина, Д.М. Левин, С.С. Володько

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies