Investigation of the Thermo Barrier Coatings of the Y–Al–O System Using Synchrotron Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Y–Al–O thermal barrier coating was investigated using synchrotron radiation. Y–Al–O coating was deposited on molybdenum substrate using cathodic-arc deposition with two elemental cathodes made from aluminum and yttrium respectively. Phase evolution was investigated during samples heating up to 1500°C in vacuum. It was found that as-deposited coating has amorphous structure and crystallization process take place at 1160–1170°C, no another phase transformations was observed. Qualitative phase composition of coating as well as microstresses in film were determined. The results of evaluation demonstrates lack of microstresses in obtained coating. Obtained results demonstrates a possibility of Y–Al–O coating deposition by cathodic arc deposition Arc-PVD technology, and deposited coating consist of YAlO3 (predominantly), Y2O3 oxides and YAl2 intermetallic.

About the authors

A. Yu. Nazarov

Ufa State Aviation Technical University

Author for correspondence.
Email: nazarov_almaz15@mail.ru
Russia, 450022, Ufa

E. L. Vardanyan

Ufa State Aviation Technical University

Email: nazarov_almaz15@mail.ru
Russia, 450022, Ufa

A. A. Maslov

Ufa State Aviation Technical University

Email: nazarov_almaz15@mail.ru
Russia, 450022, Ufa

A. A. Nikolaev

Ufa State Aviation Technical University

Email: nazarov_almaz15@mail.ru
Russia, 450022, Ufa

K. N. Ramazanov

Ufa State Aviation Technical University

Email: nazarov_almaz15@mail.ru
Russia, 450022, Ufa

A. M. Khusainova

Ufa State Aviation Technical University

Email: nazarov_almaz15@mail.ru
Russia, 450022, Ufa

A. N. Shmakov

Budker Institute of Nuclear Physics of Siberian Branch RAS

Email: nazarov_almaz15@mail.ru
Russia, 630090, Novosibirsk

References

  1. Riallant F., Cormier J., Longuet A. // Metall. Mater. Trans. A. 2014. V. 45. P. 351. https://www.doi.org/10.1007/s11661-013-1961-y
  2. Kunal M., Luis N., Calvin M.D. // Industrial & Engineering Chem. Res. 2021. V. 60. № 17. P. 6061. https://www.doi.org/10.1021/acs.iecr.1c00788
  3. Zhang C., Lv P., Xia H., Yang Z., Konovalov S. // Vacuum. 2019. V. 167. P. 263. https://www.doi.org/10.1016/j.vacuum.2019.06.022
  4. Alymov M.I., Stolin A.M., Bazhin P.M. // Industrial Laboratory. Materials Diagnostics. 2022. V. 88. № 2. P. 40. https://www.doi.org/10.26896/1028-6861-2022-88-2-40-48
  5. Bin L, Yuchen L, Changhua Z. // J. Mater. Sci. Technol. 2019. V. 35. № 5. P 833. https://www.doi.org/10.1016/j.jmst.2018.11.016
  6. Yoo Y.S. // Korean J. Chem. Eng. 2014. V. 17. P. 1.
  7. Vaßen R., Jarligo M.O., Steinke T., Mack D. E., Stöver D. // Surf. Coat. Technol. 2010. V. 205. № 4. P. 938. https://www.doi.org/10.1016/j.surfcoat.2010.08.151
  8. Uwe S. // Aerospace Sci. Technol. 2003. V. 7. № 1. P. 73. https://www.doi.org/10.1016/S1270-9638(02)00003-2
  9. Clarke D., Oechsner M., Padture N. // MRS Bulletin. 2012. V. 37. № 10. P. 891. https://www.doi.org/10.1557/mrs.2012.232
  10. Padture N. // Nature Mater. 2016. V. 15. P. 804. https://www.doi.org/10.1038/nmat4687
  11. Cao X.Q., Vassen R., Stoever D. // J. Europ. Ceram. Soc. 2004. V. 24. № 1. P. 1. https://www.doi.org/10.1016/S0955-2219(03)00129-8
  12. Мубояджян С.А. , Будиновский С.А., Гаямов А.М., Матвеев П.В. // Авиационные материалы и технологии. 2013. № 1. С. 17.
  13. Bacos M.-P., Dorvaux J.-M., Lavigne O. et al. // Aerospace Lab. 2011. Iss. 3. P. AL03-03.
  14. Shi M., Xue Zh., Zhang Zh. et al. // Surf. Coat. Technol. 2020. V. 395. P. 125913. https://www.doi.org/10.1016/j.surfcoat.2020.125913
  15. Zhan X., Li Zhen, Liu B. et al. // J. Am. Ceram. Soc. 2012. V. 95. № 4. P. 1429. https://www.doi.org/10.1111/j.1551-2916.2012.05118.x
  16. Xin Z., Zhenhua X., Xizhi F. // Mater. Lett. 2014. V. 134. P. 146. https://www.doi.org/10.1016/j.matlet.2014.07.027
  17. Lu Z. et al. // Materials Today: Proceedings. 2014. V. 1. № 1. P. 35. https://www.doi.org/10.1016/j.matpr.2014.09.009.
  18. Zhou X., Xu Zh., Fan X. et al. // Mater. Lett. 2014. V. 134. P. 146. https://www.doi.org/10.1016/j.matlet.2014.07.027

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (346KB)
3.

Download (204KB)
4.

Download (308KB)
5.

Download (106KB)
6.

Download (194KB)
7.

Download (49KB)

Copyright (c) 2023 А.Ю. Назаров, Э.Л. Варданян, А.А. Маслов, А.А. Николаев, К.Н. Рамазанов, А.М. Хусаинова, А.Н. Шмаков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies