On the Moving Charged Particle’s Position Monitoring Using Its Diffraction Radiation on the Metal Sphere

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The uniformly moving charged particle generates the transition radiation under the motion in the non-uniform medium (in particular, under crossing the interface between two media) and the transition radiation under the motion near the non-uniformities of the medium without crossing theid boundaries. Both diffraction and transition radiation can be used for detection of the charged particles and beam monitoring. While the methods based on the transition radiation from both relativistic and non-relativistic particles are widely used, the utilization of the diffraction radiation for that goals are still under study. The diffraction radiation generation is weakly perturbing for the particle’s motion that permits to develop the non-destructive methods of the beam diagnostics. The description of the diffraction radiation from the charged particle on the conducting sphere has been developed earlier using the method of images known from electrostatics. The method of finding the parameters of the particle’s flying by the sphere based on that approach using the single point detector sensitive to both intensity and polarization of diffraction radiation was proposed earlier. Here we propose the scheme with three detectors that solves the same problem without registration of the polarization.

Sobre autores

V. Syshchenko

Belgorod National Research University

Autor responsável pela correspondência
Email: syshch@yandex.ru
Russia, 308015, Belgorod

A. Tarnovsky

Belgorod National Research University

Email: syshch@yandex.ru
Russia, 308015, Belgorod

Bibliografia

  1. Гинзбург В.Л., Цытович В.Н. Переходное излучение и переходное рассеяниe. М.: Наука, 1984. 360 с.
  2. Джексон Дж. Классическая электродинамика. М.: Мир, 1965. 702 с.
  3. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1992. 664 с.
  4. Болотовский Б.М., Воскресенский Г.В. // УФН. 1966. Т. 88. Вып. 2. С. 209. https://doi.org/10.3367/UFNr.0088.196602a.0209
  5. Болотовский Б.М., Галстьян Е.А. // УФН. 2000. Т. 170. № 8. С. 809. https://doi.org/10.3367/UFNr.0170.200008a.0809
  6. Castellano M., Verzilov V.A. // Phys. Rev. ST Accel. Beams. 1998. V. 1. P. 062801. https://doi.org/10.1103/PhysRevSTAB.1.06280
  7. Potylitsyn A.P., Ryazanov M.I., Strikhanov M.N., Tishchenko A.A. // Diffraction Radiation from Relativistic Particles. Springer Tracts in Modern Physics. V. 239. Berlin Heidelberg: Springer, 2010. 277 p. https://doi.org/10.1007/978-3-642-12513-3
  8. Potylitsyn A.P. // Electromagnetic Radiation of Electrons in Periodic Structures. Springer Tracts in Modern Physics. V. 243. Berlin Heidelberg: Springer, 2011. 213 p. https://doi.org/10.1007/978-3-642-19248-7
  9. Shul’ga N.F., Syshchenko V.V., Larikova E.A. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 402. P. 167. https://doi.org/10.1016/j.nimb.2017.03.013
  10. Syshchenko V.V., Larikova E.A., Gladkih Yu.P. // JINST. 2017. V. 12. P. C12057. https://doi.org/10.1088/1748-0221/12/12/C12057
  11. Сыщенко В.В., Ларикова Э.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 4. С. 100. https://doi.org/10.1134/S0207352819040188
  12. Shul'ga N.F., Syshchenko V.V. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 452. P. 55. https://doi.org/10.1016/j.nimb.2019.05.066
  13. Сыщенко В.В., Ларикова Э.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 10. С. 108. https://doi.org/10.1134/S0207352819100196
  14. Аббасов И.И., Болотовский Б.М., Давыдов В.А. // УФН. 1986. Т. 149. Вып. 4. С. 709. https://doi.org/10.3367/UFNr.0149.198608f.0709
  15. Базылев В.А., Жеваго Н.К. Излучение быстрых частиц в веществе и во внешних полях. М.: Наука, 1987. 272 с.
  16. Ахиезер А.И., Шульга Н.Ф. Электродинамика высоких энергий в веществе. М.: Наука, 1993. 344 с.
  17. Singh R., Reichert T., Walasek-Hoehne B. Transition radiation based transverse beam diagnostics for non-relativistic ion beams. https://arxiv.org/pdf/2104.08487
  18. Singh R., Reichert T. Longitudinal charge distribution measurement of non-relativistic ion beams using coherent transition radiation. https://arxiv.org/pdf/2107.08689

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (106KB)

Declaração de direitos autorais © В.В. Сыщенко, А.И. Тарновский, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies