On the Moving Charged Particle’s Position Monitoring Using Its Diffraction Radiation on the Metal Sphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The uniformly moving charged particle generates the transition radiation under the motion in the non-uniform medium (in particular, under crossing the interface between two media) and the transition radiation under the motion near the non-uniformities of the medium without crossing theid boundaries. Both diffraction and transition radiation can be used for detection of the charged particles and beam monitoring. While the methods based on the transition radiation from both relativistic and non-relativistic particles are widely used, the utilization of the diffraction radiation for that goals are still under study. The diffraction radiation generation is weakly perturbing for the particle’s motion that permits to develop the non-destructive methods of the beam diagnostics. The description of the diffraction radiation from the charged particle on the conducting sphere has been developed earlier using the method of images known from electrostatics. The method of finding the parameters of the particle’s flying by the sphere based on that approach using the single point detector sensitive to both intensity and polarization of diffraction radiation was proposed earlier. Here we propose the scheme with three detectors that solves the same problem without registration of the polarization.

About the authors

V. V. Syshchenko

Belgorod National Research University

Author for correspondence.
Email: syshch@yandex.ru
Russia, 308015, Belgorod

A. I. Tarnovsky

Belgorod National Research University

Email: syshch@yandex.ru
Russia, 308015, Belgorod

References

  1. Гинзбург В.Л., Цытович В.Н. Переходное излучение и переходное рассеяниe. М.: Наука, 1984. 360 с.
  2. Джексон Дж. Классическая электродинамика. М.: Мир, 1965. 702 с.
  3. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1992. 664 с.
  4. Болотовский Б.М., Воскресенский Г.В. // УФН. 1966. Т. 88. Вып. 2. С. 209. https://doi.org/10.3367/UFNr.0088.196602a.0209
  5. Болотовский Б.М., Галстьян Е.А. // УФН. 2000. Т. 170. № 8. С. 809. https://doi.org/10.3367/UFNr.0170.200008a.0809
  6. Castellano M., Verzilov V.A. // Phys. Rev. ST Accel. Beams. 1998. V. 1. P. 062801. https://doi.org/10.1103/PhysRevSTAB.1.06280
  7. Potylitsyn A.P., Ryazanov M.I., Strikhanov M.N., Tishchenko A.A. // Diffraction Radiation from Relativistic Particles. Springer Tracts in Modern Physics. V. 239. Berlin Heidelberg: Springer, 2010. 277 p. https://doi.org/10.1007/978-3-642-12513-3
  8. Potylitsyn A.P. // Electromagnetic Radiation of Electrons in Periodic Structures. Springer Tracts in Modern Physics. V. 243. Berlin Heidelberg: Springer, 2011. 213 p. https://doi.org/10.1007/978-3-642-19248-7
  9. Shul’ga N.F., Syshchenko V.V., Larikova E.A. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 402. P. 167. https://doi.org/10.1016/j.nimb.2017.03.013
  10. Syshchenko V.V., Larikova E.A., Gladkih Yu.P. // JINST. 2017. V. 12. P. C12057. https://doi.org/10.1088/1748-0221/12/12/C12057
  11. Сыщенко В.В., Ларикова Э.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 4. С. 100. https://doi.org/10.1134/S0207352819040188
  12. Shul'ga N.F., Syshchenko V.V. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 452. P. 55. https://doi.org/10.1016/j.nimb.2019.05.066
  13. Сыщенко В.В., Ларикова Э.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 10. С. 108. https://doi.org/10.1134/S0207352819100196
  14. Аббасов И.И., Болотовский Б.М., Давыдов В.А. // УФН. 1986. Т. 149. Вып. 4. С. 709. https://doi.org/10.3367/UFNr.0149.198608f.0709
  15. Базылев В.А., Жеваго Н.К. Излучение быстрых частиц в веществе и во внешних полях. М.: Наука, 1987. 272 с.
  16. Ахиезер А.И., Шульга Н.Ф. Электродинамика высоких энергий в веществе. М.: Наука, 1993. 344 с.
  17. Singh R., Reichert T., Walasek-Hoehne B. Transition radiation based transverse beam diagnostics for non-relativistic ion beams. https://arxiv.org/pdf/2104.08487
  18. Singh R., Reichert T. Longitudinal charge distribution measurement of non-relativistic ion beams using coherent transition radiation. https://arxiv.org/pdf/2107.08689

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (106KB)

Copyright (c) 2023 В.В. Сыщенко, А.И. Тарновский

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».