Peculiarities of Interaction of Low-Energy Noble Gas Atoms with Methyl Groups on the Low-K-Surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the current work the computer simulations were performed to study the possibility of surface functionalization of low-K materials that are used as interlayer insulators within ultralarge integration devices with low-energy (up to 30 eV) noble gas atoms. The simulations were carried out using the ab initio density functional theory method assisted with molecular dynamics algorithms implemented in VASP package. The detailed trajectory analysis revealed the conditions under which the irradiation of incident He, Ne, Ar, Xe atoms with the energy up to 30 eV may result in the illumination of near-surface methyl groups responsible for hydrophobic properties of dielectric surface. Based on the data obtained the threshold energy (the minimum atom energy for CH3-radical formation) was evaluated, and the mechanism peculiarities of such a process under light and heavy atom irradiation were studied. It was shown that in the energy range under consideration the interaction Ne, Ar, and Xe with methyl groups has mainly collisional mechanism, therefore with increase in mass of the incident particle the threshold energy increases. He atom irradiation, on the contrary, is capable to induce the perturbations of the electronic density around the methyl group that stimulate fast atom vibrations and result in CH3-detachment.

About the authors

A. A. Solovykh

Lomonosov Moscow State University

Email: sycheva.phys@gmail.com
Russia, 119991, Moscow

A. A. Sycheva

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Author for correspondence.
Email: sycheva.phys@gmail.com
Russia, 119991, Moscow

E. N. Voronina

Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: sycheva.phys@gmail.com
Russia, 119991, Moscow; Russia, 119991, Moscow

References

  1. Baklanov M.R., Ho P.S., Zschech E. Advanced Interconnects for ULSI Technology. N.Y.: Wiley & Sons, 2012. 596 p.
  2. Baklanov M.R., de Marneffe J.-F., Shamiryan D., Urbanowicz A.M., Shi H., Rakhimova T.V., Huang H., Ho P.S. // J. Appl. Phys. 2013. V. 113. № 4. P. 041101. https://www.doi.org/10.1063/1.4765297
  3. Xu H., Hu Zh.-J., Qu X.-P., Wan H., Yan Sh.-S., Li M., Chen Sh.-M., Zhao Yu-H., Zhang J., Baklanov M.R. // Appl. Surf. Sci. 2019. V. 498. P. 143887. https://www.doi.org/10.1016/j.apsusc.2019.143887
  4. Lionti K., Volksen W., Magbitang T., Darnon M., Dubois G. // ECS J. Solid State Sci. Technol. 2014. V. 4. № 1. P. N3071. https://www.doi.org/10.1149/2.0081501jss
  5. Prager L., Marsik P., Wennrich L., Baklanov M.R., Naumov, Pistol S.L., Schneider D., Gerlach J.W., Verdonck P., Buchmeiser M.R. // Microelectronic Eng. 2008. V. 85. № 10. P. 2094. https://www.doi.org/10.1016/j.mee.2008.04.039
  6. Lee J., Graves D.B. // J. Phys. D Appl. Phys. 2010. V. 43. № 42. P. 425201. https://www.doi.org/10.1088/0022-3727/43/42/425201
  7. Sycheva A.A., Voronina E.N., Rakhimova T.V., Novikov L.S., Rakhimov A.T. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 053004. https://www.doi.org/10.1116/6.0000389
  8. Palov A.P., Proshina O.V., Rakhimova T.V., Rakhimov A.T., Voronina E.N. // Plasma Process. Polym. 2021. V. 18. P. 2100007. https://www.doi.org/10.1002/ppap.202100007
  9. Соловых А.А., Сычева А.А., Воронина Е.Н. // Письма в ЖТФ. 2022. Т. 48. № 7. С. 16. https://www.doi.org/10.21883/PJTF.2022.07.52286.19085
  10. Кон В. // УФН. 2002. Т. 172. № 3. С. 336. https://www.doi.org/10.3367/UFNr.0172.200203e.0336
  11. Kresse G., Joubert D. // Phys. Rev. 1999. V. 59. № 3. P. 1758. https://www.doi.org/10.1103/PhysRevB.59.1758
  12. Blöchl P.E. // Phys. Rev. B. 1994. V. 50. № 24. P. 17953. https://www.doi.org/10.1103/PhysRevB.50.17953
  13. Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Yu., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. // Supercomput. Frontiers Innovations. 2019. V. 6. № 2. P. 4. https://www.doi.org/10.14529/jsfi190201
  14. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://www.doi.org/10.1103/PhysRevLett.77.3865
  15. Chaudhari M., Du J. // J. Vac. Sci. & Technol. A. 2011. V. 29. № 3. P. 031303. https://www.doi.org/10.1116/1.3568963
  16. Rimsza J.M., Kelber J.A., Du J. // J. Phys. D: Appl. Phys. 2014. V. 47. № 33. P. 335204. https://www.doi.org/10.1088/0022-3727/47/33/335204
  17. Kazi H., Rimsza J., Du J. // J. Vac. Sci. Technol. A. 2014. V. 32. № 5. P. 051301. https://www.doi.org/10.1116/1.4890119
  18. De Darwent B. Bond Dissociation Energies in Simple Molecules. Washington: Nat. Bur. Stand, 1970. 60 p.
  19. Humphrey W., Dalke A., Schulten K. // J. Molec. Graphics. 1996. V. 14. № 1. P. 33. https://www.doi.org/10.1016/0263-7855(96)00018-5
  20. Behrisch R., Eckstein W. Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies. Berlin: Springer-Verlag, 2007. 200 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (62KB)
3.

Download (268KB)
4.

Download (214KB)
5.

Download (129KB)
6.

Download (109KB)

Copyright (c) 2023 А.А. Соловых, А.А. Сычева, Е.Н. Воронина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies