Effect of Electron Fluence on the Concentration of Color Centers in Aluminum Oxide Hollow Particles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of fluence (1–7) × 1016 cm–2 electrons with an energy of 30 keV on the concentration of color centers in aluminum oxide hollow particles micron-sized in comparison with bulk Al2O3 microparticles was studied. The analysis was carried out using diffuse reflectance spectra in the range from 250 to 2500 nm in situ. The radiation resistance of the microspheres under study was evaluated relative to micropowders from the difference diffuse reflectance spectra obtained by subtracting the spectra after irradiation from the spectra of non-irradiated samples. Changes in the difference diffuse reflection spectra of aluminum oxide microparticles and microspheres obtained with different electron fluences showed that with an increase in the induced electron fluence, absorption increases throughout the spectrum. It was found that the radiation resistance of aluminum oxide microspheres to the effects of electrons with an energy of 30 keV a fluence (1–7) × 1016 cm–2 greater than the radiation resistance of Al2O3 microparticles. The increase in the radiation resistance of aluminum oxide hollow microparticles compared to the radiation resistance of aluminum oxide bulk microparticles is due to the low concentration of induced defects of the anionic sublattice.

Авторлар туралы

V. Iurina

Аmur State University; Tomsk State University of Control Systems and Radioelectronics

Хат алмасуға жауапты Автор.
Email: viktoriay-09@mail.ru
Russia, 675027, Blagoveshchensk; Russia, 634050, Tomsk

A. Dudin

Аmur State University

Email: v1ta1y@mail.ru
Russia, 675027, Blagoveshchensk

V. Neshimenko

Аmur State University; Tomsk State University of Control Systems and Radioelectronics

Хат алмасуға жауапты Автор.
Email: v1ta1y@mail.ru
Russia, 675027, Blagoveshchensk; Russia, 634050, Tomsk

M. Mikhailov

Tomsk State University of Control Systems and Radioelectronics

Email: v1ta1y@mail.ru
Russia, 634050, Tomsk

Әдебиет тізімі

  1. Михайлов М.М. Радиационное и космическое материаловедение. Томск: Издательство Томского университета, 2008. 314 с.
  2. Акишин А.И. Космическое материаловедение. Методическое и учебное пособие. М.: НИИЯФ МГУ, 2007. 209 с.
  3. Михайлов М.М. Прогнозирование оптической деградации терморегулирующих покрытий космических аппаратов. Новосибирск: Сиб. изд. фирма РАН “Наука”, 1999. 192. c.
  4. Neshchimenko V.V., Chundong Li, Mikhailov M.M., Jinpeng Lv. // Nanoscale. 2018. V. 47. № 10. P. 22335. https://www.doi.org/10.1039/C8NR04455D
  5. Neshchimenko V.V., Chundong Li, Mikhailov M.M. // Dyes and Pigments. 2017. V. 145. P. 354. https://www.doi.org/10.1007/s11182-018-1566-4
  6. Mikhailov M.M., Neshchimenko V.V., Sokolovskiy A.N., Yurina V.Yu. // Progress in Organic Coatings. 2019. V. 131. P. 340. https://www.doi.org/10.1016/j.porgcoat.2019.03.001
  7. Bladh K.W., Bideaux R.A., Anthony-Morton E., Nichols B.G. The Handbook of Mineralogy III. Mineral Data Publishing, 1997. P. 628.
  8. Batra I.P. // J. Phys. C: Solid State Phys. 1982. V. 15. P. 5399. https://www.doi.org/10.1088/0022-3719/15/26/019
  9. Mo S.D., Xu Y.N., Ching W.Y. // J. Am. Ceram. Soc. 1997. V. 80. P. 1193.
  10. Arnal P.M., Comotti, M., Schüth F. // Angew. Chem. Int. Ed. 2006. V. 45. № 48. P. 8224. https://www.doi.org/10.1002/anie.200603507
  11. Wang Y.W., Tseng W.J. // J. Am. Ceram. Soc. 2008. V. 92. P. 32. https://www.doi.org/10.1111/j.1551-2916.2008.02653.x
  12. Serebryakova M.A., Zaikovskii A.V., Sakhapov S.Z., Smovzh D.V., Sukhinin G.I., Novopashin S.A. // Int. J. Heat Mass Transfer. 2017. V. 108. P. 1314. https://www.doi.org/10.1016/j.ijheatmasstransfer. 2016.12.098
  13. Aluker E.D., Gavrilov V.V., Chernov S. A. // Phys. Status Solidi B. 1992. V. 1. P. 283. https://www.doi.org/10.1002/pssb.2221710131
  14. Evans B.D., Pogatshnik G.J., Chen Y. // Nucl. Instrum. Methods Phys. Res. B. 1994. V. 91. P. 258. https://www.doi.org/10.1016/0168-583x(94)96227-8
  15. Crawford J.H. // Nucl. Instrum. Methods Phys. Res. B. 1986. V. 1. P. 159. https://www.doi.org/10.1016/0168-583x(84)90063-6
  16. Вертц Дж., Болтон Дж., Теория и практические приложения метода ЭПР. М.: Мир, 1975. 548 с.
  17. Raj S.S., Gupta S.K., Pathak N., Grover V., Tyagi A.K. // Adv. Powder Technol. 2017. V. 28. P. 1505. https://www.doi.org/10.1016/j.apt.2017.03.020
  18. Kim J.S., Kang H.I., Kim W.N., Kim J.I., Choi J.C., Park H.L., Kim G.C., Kim T.W., Hwang Y.H., Mho S.I., Jung M.-C., Han M. // Appl. Phys. Lett. 2003. V. 82. P. 2029. https://www.doi.org/10.1063/1.1564632
  19. Boumaza A., Favaro L., Ledion J., Sattonnay G., Brubach J.B., Berthet P., Huntz A.M., Roy P., Tetot R. // J. Solid State Chem. 2009. V. 182. P. 1171. https://www.doi.org/10.1016/j.jssc.2009.02.006
  20. Surdo A.I., Pustovarov V.A., Kortov V.S., Kishka A.S., Zinin E.I. // Nucl. Instrum. Methods Phys. Res. A. 2005. V. 543. P. 234. https://www.doi.org/10.1016/j.nima.2005.01.189
  21. Itou M.A., Fujiwara T.U // J. Phys. Chem. C. 2009. V. 113. P. 20949. https://www.doi.org/10.1021/JP908417M
  22. Watcharatharapong T., Thienprasert J.T., Limpijumnong S. // Integrated Ferroelectrics. 2014. V. 156. P. 79. https://www.doi.org/10.1080/10584587.2014.906290
  23. Pustovarov V.A., Perevalov T.V., Gritsenko V.A., Smirnova T.P., Yelisseyev A.P. // Thin Solid Films. 2011. V. 519. P. 6319. https://www.doi.org/10.1016/j.tsf.2011.04.014
  24. Wang L., Zhang L.D., Wang J.H., Feng Y.J., Feng K.M., Yang J.J., Liu N. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 406. P. 600. https://www.doi.org/10.1016/j.nimb.2017.02.073
  25. Caulfield K.J., Cooper R., Boas J.F. // Phys. Rev. B. 1993. V. 47. P. 55. https://www.doi.org/10.1103/PhysRevB.47.55
  26. Perevalov T.V., Tereshenko O.E., Gritsenko V.A., Pustovarov V.A., Yelisseyev A. P., Park C., Lee C. // J. Appl. Phys. 2010. V. 108. P. 013501. https://www.doi.org/10.1063/1.3455843
  27. Pustovarov V.A. Aliev V.S., Perevalov T.V., Gritsenko V.A., Eliseev A.P. // J. Exp. Theor. Phys. 2010. V. 111. P. 989. https://www.doi.org/10.1134/S1063776110120113
  28. Stashans A., Kotomin E., Calais J.-L. // Phys. Rev. B. 1994. V. 49 № 21. P. 14854. https://www.doi.org/10.1103/PhysRevB.49.14854
  29. Iurina V.Yu., Neshchimenko V.V., Chundong Li. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. № 2. P. 253. https://www.doi.org/10.1134/S102745102002038X
  30. Косицын Л.Г., Михайлов М.М., Кузнецов Н.Я., Дворецкий М.И. // Приборы и техника эксперимента. 1985. № 4. С. 176.
  31. Dienes G.J., Welch. D.O., Fischer C.R., Hatcher R.D., Lazareth O., Samberg M. // Phys. Rev. B: Solid State. 1975. V. 11. P. 3060. https://www.doi.org/10.1103/PHYSREVB.11.3060

Қосымша файлдар


© В.Ю. Юрина, А.Н. Дудин, В.В. Нещименко, М.М. Михайлов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>