Olfactory bulbectomy in mice induces increase of hippocampal pro-nerve growth factor protein levels

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Olfactory bulbectomy in rodents is a wide-used model of cholinergic dysfunction, yet, the state of nerve growth factor system, crucial for cholinergic neurons survival, is poorly understood in this model. In the present study the effect of olfactory bulbectomy on nerve growth factor (NGF) forms levels in mouse brain regions was assessed. Levels of proNGF and mature NGF protein were evaluated in medial septal complex and hippocampus samples using Western blot. Also, hippocampal choline acetyltransferase activity was measured to assess cholinergic transmission state. 30 days after bulbectomy, proNGF level was increased in hippocampus but not in medial septal complex. Mature NGF levels remained unchanged. Hippocampal choline acetyltransferase activity was significantly decreased. This decrease in choline acetyltransferase activity was probably associated with predominant activation of pro-NGF signaling cascades triggered by p75 receptor.

作者简介

O. Nedogreeva

Institute of Higher Nervous Activity and Neurophysiology, RAS

Email: nedogreeva@ihna.ru
Moscow, Russia

M. Stepanichev

Institute of Higher Nervous Activity and Neurophysiology, RAS

编辑信件的主要联系方式.
Email: nedogreeva@ihna.ru
Moscow, Russia

参考

  1. Hirsch J.D. // Life Sci. 1980. V. 26. P. 1551–1559.
  2. Zueger M., Urani A., Chourbaji S., Zacher C., Roche M., Harkin A., Gass P. // Neurosci. Lett. 2005. V. 374. P. 142–146.
  3. Jancsár S.M., Leonard B.E. // Prog. Neuropsychopharmacol. Biol. Psychiatry 1984. V. 8. P. 263–269.
  4. Slotkin T.A., Seidler F.J. // Brain Res. Bull. 2006. V. 68. P. 341–345.
  5. Leonard B.E., Tuite M. // Int. Rev. Neurobiol. 1981. V. 22. P. 51–86.
  6. Scholfield C.N., Moroni F., Corradetti R., Pepeu G. // J. Neurochem. 1983. V. 41. P. 135–138.
  7. Tasset I., Medina F.J., Peña J., Jimena I., Muñoz M., del Carmen Salcedo M., Ruiz C., Feijóo M., Montilla P., Túnez, I. // Physiol. Res. 2010. V. 59. P. 105–112.
  8. Almeida R.F. de, Ganzella M. Machado D.G., Loureiro S.O., Leffa D., Quincozes-Santos A., Pettenuzzo L.F., Duarte M.M.M.F., Duarte T., Souza D.O. // Prog. Neuropsychopharmacol. Biol. Psychiatry 2017. V. 76. P. 1–11.
  9. Jarosik J., Legutko B., Unsicker K., von Bohlen und Halbach O. // Exp. Neurol. 2007. V. 204. P. 20–28.
  10. Ozcan H., Aydın N. Aydın M.D., Oral E., Gündoğdu C., Şipal S., Halıcı Z. // Nord. J. Psychiatry. 2020. V. 74. P. 194–200.
  11. Machado D.G., Cunha M.P., Neis V.B., Balen G.O., Colla A., Grando J., Brocardo P.S., Bettio L.E.B. Capra J.C., Rodrigues A.L.S. // Pharmacol. Biochem. Behav. 2012. V. 103. P. 220–229.
  12. Гуляева Н.В., Бобкова Н.В., Колосова Н.Г., Самохин А.Н., Степаничев М.Ю., Стефанова Н.А. // Биохимия. Т. 82. В. 10. 2017. С. 1427–1443.
  13. Nesterova I.V., Bobkova N.V., Medvinskaya N.I., Samokhin A.N., Aleksandrova I.Yu. // Neurosci. Behav. Physiol. 2008. V. 38. P. 349–353.
  14. Avetisyan A., Balasanyants S., Simonyan R., Koroev D., Kamynina A., Zinovkin R., Bobkova N., Volpina O. // Neurochem. Int. 2020. V. 140. P. 104799.
  15. Mesulam M.M. // J. Histochem. Cytochem. 1976. V. 24. P. 1281–1285.
  16. Hozumi S., Nakagawasai O., Tan-No K. Niijima F., Yamadera F., Murata A., Arai Y., Yasuhara H., Tadano T. // Behav. Brain Res. 2003. V. P. 138. P. 9–15.
  17. Niewiadomska G., Komorowski S., Baksalerska-Paze- ra M. // Neurobiol. Aging. 2002. V. 23. P. 601–613.
  18. Yan R., Yalinca H., Paoletti F., Gobbo F., Marchetti L., Kuzmanic A., Lamba D., Gervasio F.L., Konarev P.V., Cattaneo A., Pastore A. // Structure. 2019. V. 27. P. 78–89.e3.
  19. Moyano P., Flores A., García J., García J.M., Anadon M.J., Frejo M.T., Sola E., Pelayo A., del Pino J. // Food and Chemical Toxicology. 2021. V. 157. P. 112614.
  20. Sofroniew M.V., Howe C.L., Mobley W.C. // Annu. Rev. Neurosci. 2001. V. 24. P. 1217–1281.
  21. Skeldal S., Sykes A.M., Glerup S., Matusica D., Palstra N., Autio H., Boskovic Z., Madsen P., Castrén E., Nykjaer A., Coulson E.J. // J. Biol. Chem. 2012. V. 287. P. 43798–43809.
  22. Crutcher K.A., Scott S.A., Liang S., Everson W.V., Weingartner J. // J. Neurosci. 1993. V. 13. P. 2540–2550.
  23. Peng S. Wuu J., Mufson E.J., Fahnestock M. // J. Neuropathol. Exp. Neurol. 2004. V. 63. P. 641–649.
  24. Mufson E.J., Lavine N., Jaffar S., Kordower J.H., Quirion R., Saragovi H. Uri. // Exp. Neurol. 1997. V. 146. P. 91–103.
  25. Yu J., Wiley R.G., Perez-Polo R.J. // J. Neurosci. Res. 1996. V. 43. P. 213–223.
  26. Naumann T., Straube A., Frotscher M. // Eur. J. Neurosci. 1997. V. 9. P. 1340–1349.
  27. Ciafrè S., Ferraguti G., Tirassa P., Iannitelli A., Ralli M., Greco A., Chaldakov G.N., Rosso P., Fico E., Messina M.P., Carito V., Tarani L., Ceccanti M., Fiore M. // Riv. Psichiatr. 2020. V. 55. P. 4–15.
  28. Hellweg R., Zueger M., Fink K., Hörtnagl H., Gass P. // Neurobiol. Dis. 2007. V. 25. P. 1–7.
  29. Antunes M.S, Jesse C.R, Ruff J.R., de Oliveira Espinosa D., Gomes N.S., Altvater E.E.T., Donato F., Giacomeli R., Boeira S.P. // Eur. J. Pharmacol. 2016. V. 789. P. 411–420.
  30. Hendriksen H., Meulendijks D., Douma T.N., Bink D.I., Breuer M.E., Westphal K.G.C., Olivier B., Oosting R. // Neuropharmacology. 2012. V. 62. P. 270–277.
  31. Takahashi K., Nakagawasai O., Nemoto W., Odaira T., Arai Y., Hisamitsu T., Tan-No K. // Eur. Neuropsychopharm. 2017. V. 27. P. 1000–1010.
  32. Song C., Xiang Y.Z., Manku M. // J. Neurosci. 2009. V. 29. P. 14–22.
  33. Nedogreeva O.A., Stepanichev M.Y., Gulyaeva N.V. // Zh. Vyssh. Nerv. Deyat. Im. I. P. Pavlova. 2020. V. 70. P. 104–114.
  34. Wren A., Van Riezen H., Rigter H. // Pharmakopsychiatr. Neuropsychopharmakol. 1977. V. 10. P. 96–100.
  35. Kang H.M., Jin J., Lee S., Ryu J., Park C. // Neuroreport. 2010. V. 21. P. 179–184.
  36. Lazo O.M., Mauna J.C., Pissani C.A., Inestrosa N.C., Bronfman F.C. // Mol. Neurodegener. 2010. V. 5. P. 5.
  37. Niewiadomska G., Mietelska-Porowska A., Mazurkiewicz M. // Behav. Brain Res. 2011. V. 221. P. 515–526.
  38. Hagg T., Manthorpe M., Vahlsing H.L., Varon S.H.L. // Exp. Neurol. 1988. V. 101. P. 303–312.
  39. . Roßner S., Wörtwein G., Gu Z., Yu J., Schliebs R., Bigl V., Perez-Polo J.R. // J. Neurochem. 1997. V. 69. P. 947–953.
  40. Mufson E.J., Kroin J.S., Sendera T.J., Sobreviela T. // Prog. Neurobiol. 1999. V. 57. P. 451–484.
  41. Nedogreeva O.A., Lazareva N.A., Stepanichev M.Y., Gulyaeva N.Y. // Zh. Vyssh. Nerv. Deyat. Im. I.P. Pavlova. 2020. V. 70. P. 794–806.
  42. Fahnestock M., Michalski B., Xu B., Coughlin M.D. // Mol. Cell. Neurosci. 2001. V. 18. P. 210–220.
  43. Bruno M.A., Claudio Cuello A. // PNAS. 2006. V. 103. P. 6735–6740.
  44. Stepanichev M., Nedogreeva O., Gulyaeva N. // Alzheimers Dement. Cogn. Neurol. 2017. V. 1. P. 1000110.
  45. Dobryakova Y.V., Spivak Y.S., Zaichenko M.I., Koryagina A.A., Markevich V.A., Stepanichev M.Yu., Bolshakov A.P. // Front. Neurosci. 2021. V. 15. P. 745050.
  46. DeKosky S.T., Harbaugh R.E., Schmitt F.A., Bakay R.A.E., Chui H.C. Knopman D.S., Reeder T.M., Shetter A.G., Senter H.J., Markesbery W.R. // Ann. Neurol. 1992. V. 32. P. 625–632.
  47. DeKosky S.T., Ikonomovic M.D., Styren S.D., Beckett L., Wisniewski S., Bennett D.A., Cochran E.J., Kordower J.H., Mufson E.J. // Ann. Neurol. 2002. V. 51. P. 145–155.
  48. Hefti F., Dravid A., Hartikka J. // Brain Res. 1984. V. 293. P. 305–311.
  49. Guo Q., Xie J., Du H. // Brain Res. 2000. V. 874. P. 221–232.
  50. Bruno M.A., Leon W.C., Fragoso G., Mushynski W.E., Almazan G., Cuello A.C. // J. Neuropathol. Exp. Neurol. 2009. V. 68. P. 857–869.
  51. Cuello A.C., Ferretti M.T., Iulita M.F. // Neurodegener. Dis. 2012. V. 10. P. 104–107.
  52. Nedogreeva O.A., Evtushenko N.A., Manolova A.O., Peregud D.I., Yakovlev A.A., Lazareva N.A., Gulyaeva N.V., Stepanichev M.Yu. // Curr. Alzheimer Res. 2021. V. 18. P. 1140–1151.
  53. Barrett G.L., Naim T., Trieu J., Huang M. // J. Neurosci. Res. 2016. V. 94. P. 389–400.
  54. Greferath U., Trieu J., Barrett G.L. // J. Neurosci. Res. 2012. V. 90. P. 278–87.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).