Digital transformation in psychiatry: is artificial intelligence changing approaches to diagnosis and treatment of mental disorders?
- Authors: Mendelevich V.D.1, Galyautdinov G.S.1, Zhidyaevskij A.G.1, Andrianov A.A.1, Kichatov S.A.1
-
Affiliations:
- Kazan State Medical University
- Issue: Vol LVII, No 3 (2025)
- Pages: 199-208
- Section: Reviews
- URL: https://journals.rcsi.science/1027-4898/article/view/349005
- DOI: https://doi.org/10.17816/nb677833
- EDN: https://elibrary.ru/MKSMND
- ID: 349005
Cite item
Abstract
The article examines achievements and prospects of artificial intelligence (AI) applications in psychiatry. Primary attention is given to its role in diagnosis, treatment, and prognosis prediction of mental disorders. Artificial intelligence demonstrates high efficacy in analyzing speech patterns, neuroimaging data, and predicting treatment response, opening new prospects for personalized medicine in psychiatry. However, implementing AI in clinical practice faces challenges including the need for standardized training data, algorithm transparency requirements, and patient privacy and data protection concerns. A significant limitation of AI in psychiatry remains its inability to demonstrate empathy, which reduces the effectiveness of these technologies in therapeutic processes. In the future, AI may become a key physician support tool by automating diagnostic processes, patient monitoring, and medication selection. Successful AI integration into clinical practice requires addressing existing technological and ethical limitations, improving digital literacy among specialists, and developing regulatory frameworks for medical AI applications.
Full Text
##article.viewOnOriginalSite##About the authors
Vladimir D. Mendelevich
Kazan State Medical University
Email: mendelevich_vl@mail.ru
ORCID iD: 0000-0002-8476-6083
SPIN-code: 2302-2590
MD, Dr. Sci. (Medicine), Professor
Russian Federation, KazanGenshat S. Galyautdinov
Kazan State Medical University
Email: galgen077@mail.ru
ORCID iD: 0000-0001-7403-0200
SPIN-code: 3626-0533
MD, Dr. Sci. (Medicine), Professor
Russian Federation, KazanAlexandr G. Zhidyaevskij
Kazan State Medical University
Author for correspondence.
Email: alexandr.zhidyaevskij@kazangmu.ru
ORCID iD: 0000-0002-4245-5201
SPIN-code: 5865-6771
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, KazanAlexander A. Andrianov
Kazan State Medical University
Email: AANNDOIVR@yandex.ru
ORCID iD: 0009-0006-1917-5785
SPIN-code: 1403-9767
Russian Federation, Kazan
Sergey A. Kichatov
Kazan State Medical University
Email: ksa@kazangmu.ru
ORCID iD: 0009-0005-3427-8689
SPIN-code: 8831-4158
Russian Federation, Kazan
References
- Elizarova MI, Urazova KM, Ermashov SN, Pronkin NN. Artificial intelligence in medicine. International Journal of Professional Science. 2021;(5):81–85. EDN: OWACLC
- Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. J Family Med Prim Care. 2019;8(7):2328–2331. doi: 10.4103/jfmpc.jfmpc_440_19
- Morris MX, Fiocco D, Caneva T, et al. Current and future applications of artificial intelligence in surgery: implications for clinical practice and research. Front Surg. 2024;11:1393898. doi: 10.3389/fsurg.2024.1393898
- Morozov DYu, Omelyanovskiy VV. Is artificial intelligence necessary for healthcare system? Medical Technologies. Assessment and Choice. 2024;4:40–48. doi: 10.17116/medtech20244604140 EDN: EERDPO
- Li Y, Wu A, Zhou HY. EVEscape: Revealing potential escape sites based on the viral variation landscape. Biophys Rep. 2024;10(2):133–134. doi: 10.52601/bpr.2024.240902
- Berkinblit M.B. Neural networks. Moscow: MIROS i VZMSh RAO; 1993. 96 р. ISBN: 5-7084-0026-9
- Lekun Ya. How the car learns. A revolution in neural networks and deep learning. Moscow: Alpina Non-fiction; 2021. 351 р. ISBN: 978-5-907470-52-5
- Morales ЕА, Jair НЕ. A brief introduction to supervised, unsupervised, and reinforcement learning. In: Biosignal processing and classification using computational learning and intelligence. New York: Academic Press; 2022. Р. 111–129.
- Vasenkov D.V. Methods of training artificial neural networks. Computer Tools in Education Journal. 2007;(1):20–29. (In Russ.) EDN: KVMOUR
- Arumugam R, Shanmugamani R. Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications. Birmingham: Packt Publishing Ltd; 2018. 312 р. ISBN: 1789135915
- Anmella G, De Prisco M, Joyce JB, et al. Automated speech analysis in bipolar disorder: the caliber study protocol and preliminary results. J Clin Med. 2024;13(17):4997. doi: 10.3390/jcm13174997
- Nour MM, McNamee DC, Liu Y, Dolan RJ. Trajectories through semantic spaces in schizophrenia and the relationship to ripple bursts. Proc Natl Acad Sci USA. 2023;120(42):e2305290120. doi: 10.1073/pnas.2305290120
- Miotto R, Li L, Kidd B, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6:26094. doi: 10.1038/srep26094
- Ramos-Lima LF, Waikamp V, Antonelli-Salgado T, et al. The use of machine learning techniques in trauma-related disorders: a systematic review. J Psychiatr Res. 2020;121:159–172. doi: 10.1016/j.jpsychires.2019.12.001
- Li R, Huang Y, Wang Y, et al. MRI-based deep learning for differentiating between bipolar and major depressive disorders. Psychiatry Res Neuroimaging. 2024;345:111907. doi: 10.1016/j.pscychresns.2024.111907
- Huang W, Yan H, Wang C, et al. Deep natural image reconstruction from human brain activity based on conditional progressively growing generative adversarial networks. Neurosci Bull. 2021;37(3):369–379. doi: 10.1007/s12264-020-00613-4
- Chang B, Choi Y, Jeon M, et al. ARPNet: antidepressant response prediction network for major depressive disorder. Genes (Basel). 2019;10(11):907. doi: 10.3390/genes10110907
- Mak KK, Lee K, Park C. Applications of machine learning in addiction studies: A systematic review. Psychiatry Res. 2019;275:53–60. doi: 10.1016/j.psychres.2019.03.001
- Schmaal L, Marquand AF, Rhebergen D, et al. Predicting the naturalistic course of major depressive disorder using clinical and multimodal neuroimaging information: a multivariate pattern recognition study. Biol Psychiatry. 2015;78(4):278–286. doi: 10.1016/j.biopsych.2014.11.018
- Ballard ED, Gilbert JR, Wusinich C, Zarate CA Jr. New methods for assessing rapid changes in suicide risk. Front Psychiatry. 2021;12:598434. doi: 10.3389/fpsyt.2021.598434
- Lejeune A, Le Glaz A, Perron PA, et al. Artificial intelligence and suicide prevention: a systematic review. Eur Psychiatry. 2022;65(1):1–22. doi: 10.1192/j.eurpsy.2022.8
- Peddle M, Bearman M, Nestel D. Virtual patients and nontechnical skills in undergraduate health professional education: an integrative review. Clinical Simulation in Nursing. 2016;12(9):400–410. doi: 10.1016/j.ecns.2016.04.004
- Zhu Y. Revolutionizing simulation-based clinical training with AI: Integrating FASSLING for enhanced emotional intelligence and therapeutic competency in clinical psychology education. Journal of Clinical Technology and Theory. 2025;2(1):38–54. doi: 10.54254/3049-5458/2025.21247
- Bryzgalina EV, Gumarova AN, Shkomova EM. Key problems, risks and restrictions of using artificial intelligence in medicine and education. Moscow University BulletiN. Series 7. Philosophy. 2022;(6):93–108. EDN: GXUYWB
- Alikperova NV. Artificial intelligence in healthcare: risks and opportunities. City Healthcare. 2023;4(3):41–49. doi: 10.47619/2713-2617.zm.2023.v.4i3;41-49
- Medvedeva EI. Artificial intelligence: opportunities, risks, action program. Moscow medicine. 2024;(1):94–96. EDN: QNQCEM
- Imameeva RD. The risks of creation and functioning of artificial intelligence in medicine. Journal of Legal Sciences. 2021;(1):33–40. doi: 10.21777/2587-9472-2021-1-33-40 EDN: AUOAIL
- Wójcik MA. Algorithmic discrimination in health care: An EU law perspective. Health Hum Rights. 2022;24(1):93–103.
- Varona D, Suárez JL. Discrimination, bias, fairness, and trustworthy AI. Appl Sci. 2022;12(12):5826. doi: 10.3390/app12125826
- Chen Y, Clayton EW, Novak LL, et al. Human-centered design to address biases in artificial intelligence. J Med Internet Res. 2023;25:e43251. doi: 10.2196/43251
- Xie F, Chakraborty B, Ong MEH, et al. AutoScore: a machine learning-based automatic clinical score generator and its application to mortality prediction using electronic health records. JMIR Med Inform. 2020;8(10):e21798. doi: 10.2196/21798
- Wanyan T, Honarvar H, Azad A, et al. Deep learning with heterogeneous graph embeddings for mortality prediction from electronic health records. Data Intelligence. 2021;3(3):1–13. doi: 10.1162/dint_a_00097
- Mendelevich VD. Overdiagnosis of schizophrenia as a cognitive distortion of the process of knowledge of clinical reality. Neurology Bulletin. 2023;55(1):5–14. doi: 10.17816/nb160308 EDN: ZWAXRT
- Eitel F, Schulz MA, Seiler M, et al. Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Exp Neurol. 2021;339:113608. doi: 10.1016/j.expneurol.2021.113608
- Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks. Paper presented at 2nd International Conference on Learning Representations, ICLR 2014, Banff, Canada.
- Lapuschkin S, Waldchen S, Binder A, et al. Unmasking clever hans predictors and assessing what machines really learn. Nat Commun. 2019;10(1):1096. doi: 10.1038/s41467-019-08987-4
- Ienca M, Ignatiadis K. Artificial intelligence in clinical neuroscience: methodological and ethical challenges. AJOB Neurosci. 2020;11(2):77–87. doi: 10.1080/21507740.2020.1740352
- Fuchs T. Subjectivity and intersubjectivity in psychiatric diagnosis. Psychopathology. 2010;43(4):268–274. doi: 10.1159/000315126
- Mirowsky J. Subjective boundaries and combinations in psychiatric diagnoses. The Journal of Mind and Behavior. 1990;11(3/4):407–423.
- Cath C, Wachter S, Mittelstadt B, et al. artificial intelligence and the 'Good Society': the US, EU, and UK approach. Sci Eng Ethics. 2018;24(2):505–528. doi: 10.1007/s11948-017-9901-7
- Meszaros J, Ho C. AI research and data protection: Can the same rules apply for commercial and academic research under the GDPR? Computer Law & Security Review. 2021;41:105532. doi: 10.1016/j.clsr.2021.105532
- Montemayor C, Halpern J, Fairweather A. In principle obstacles for empathic AI: why we can't replace human empathy in healthcare. AI Soc. 2022;37(4):1353–1359. doi: 10.1007/s00146-021-01230-z
Supplementary files





