Pediatric multiple sclerosis: pathogenesis, clinical and radiological features, diagnosis and treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Data on the epidemiology, clinical features, diagnosis and treatment of paediatric multiple sclerosis (PMS), as well as characteristics of the immune and endocrine status of children compared with the population with multiple sclerosis (MS) were analysed using the Scopus, Web of Science, MedLine, The Cochrane, EMBASE, Global Health and RSCI databases. The MS course in children and adults has a number of important differences, which may require the development of different treatment approaches than in adults. At the same time, despite the large number of studies on PMS, the pathogenesis of these above differences remains unclear. PMS is characterised by a more active course than in the adult population and by greater severity of exacerbations; in addition, a more rapid increase in lesion volume and early brain atrophy are observed in the absence of effective treatment. Despite a more rapid and complete regression of the neurological deficit after exacerbations and, consequently, a slower rate of its accumulation, conversion to SPMS and achievement of disability occurs at an earlier age. The characteristics of subsets and functional differences of lymphocytes revealed by immunological studies suggest possible differences in the choice of disease-modifying therapies in children and adults. However, the number of studies on the immune and endocrine status of patients with PMS compared with the adult population is limited and the results are often conflicting. PMS is therefore an important medical and social problem that requires further research to optimise approaches to disease-modifying therapies.

About the authors

Valeriy M. Lebedev

N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences

Author for correspondence.
Email: lebedevvaleriy@bk.ru
ORCID iD: 0000-0002-3358-5768
SPIN-code: 6740-8384

Head of Neurology Depart., Junior Researcher

Russian Federation, Saint-Petersburg

References

  1. Gusev EI, Boiko AN, Stolyarov ID. Multiple Sclerosis. M.: Real Taim; 2009. 296 p. (In Russ.)
  2. Gusev EI. Multiple Sclerosis. Clinical guidance. EI Gusev, IA Zavalishin, AN Boiko, editors. M.: Real Taim; 2011. 520 p. (In Russ.)
  3. Ghezzi A, Baroncini D, Zaffaroni M et al. Pediatric versus adult MS: similar or different? Multiple Sclerosis and Demyelinating Disorders. 2017;2(5):1–14. doi: 10.1186/s40893-017-0022-6.
  4. Jeong A, Oleske D, Holman J. Epidemiology of pediatric-onset multiple sclerosis: A systematic review of the literature. J Child Neurol. 2019;34(12):705–712. doi: 10.1177/0883073819845827.
  5. Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9(5):520–532. doi: 10.1016/S1474-4422(10)70064-8.
  6. El’chaninova EYu, Smagina IV. Pediatric multiple sclerosis. Nevrologicheskiy Zhurnal (Neurological Journal). 2017;22(2):64–71. (In Russ.) doi: 10.18821/1560-9545-2017-22-2-64.
  7. Banwell B, Ghezzi A, Bar-Or A et al. Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions. The Lancet Neurology. 2007;6(10):887–902. doi: 10.1016/s1474-4422(07)70242-9.
  8. Deiva K. Pediatric onset multiple sclerosis. Rev Neurol. 2020;176(1–2):30–36. doi: 10.1016/j.neurol.2019.02.002.
  9. Langille MM, Rutatangwa A, Francisco C. Pediatric multiple sclerosis: A review. Adv Pediatr. 2019;66:209–229. doi: 10.1016/j.yapd.2019.03.003.
  10. Ahn JJ, O’Mahony J, Moshkova M et al. Puberty in females enhances the risk of an outcome of multiple sclerosis in children and the development of central nervous system autoimmunity in mice. Multiple Sclerosis Journal. 2015;21(6):735–748. doi: 10.1177/1352458514551453.
  11. Renoux C, Vukusic S, Mikaeloff Y et al; Adult Neurology Departments KIDMUS Study Group. Natural history of multiple sclerosis with childhood onset. N Engl J Med. 2007;356(25):2603–2613. doi: 10.1056/NEJMoa067597.
  12. Wang CX, Greenberg BM. Pediatric multiple sclerosis: From recognition to practical clinical management. Neurol Clin. 2018;36(1):135–149. doi: 10.1016/j.ncl.2017.08.005.
  13. Yeh EA, Chitnis T, Krupp L et al; US Network of Pediatric Multiple Sclerosis Centers of Excellence. Pediatric multiple sclerosis. Nat Rev Neurol. 2009;5(11):621–631. doi: 10.1038/nrneurol.2009.158.
  14. Gorman MP, Healy BC, Polgar-Turcsanyi M et al. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol. 2009;66(1):54–59. doi: 10.1001/archneurol.2008.505.
  15. Huppke B, Ellenberger D, Rosewich H et al. Clinical presentation of pediatric multiple sclerosis before puberty. Eur J Neurol. 2014;21(3):441–446. doi: 10.1111/ene.12327.
  16. Simone IL, Carrara D, Tortorella C et al. Course and prognosis in early-onset MS: Comparison with adult-onset forms. Neurology. 2002;59(12):1922–1928. doi: 10.1212/01.wnl.0000036907.37650.8e.
  17. Krupp LB, Banwell B, Tenembaum S; International Pediatric MSSG. Consensus definitions proposed for pediatric multiple sclerosis and related disorders. Neurology. 2007;68:7–12.
  18. Tenembaum S, Chitnis T, Nakashima I et al. Neuromyelitis optica spectrum disorders in children and adolescents. Neurology. 2016;87:59–66.
  19. Alroughani R, Ahmed SF, Al-Hashel J. Pediatric-onset multiple sclerosis disease progression in Kuwait: A retrospective analysis. Pediatr Neurol. 2015;53:508–512. doi: 10.1016/j.pediatrneurol.2015.06.010.
  20. Derle E, Kurne AT, Konuskan B et al. Unfavorable outcome of pediatric onset multiple sclerosis: Follow-up in the pediatric and adult neurology departments of one referral center, in Turkey. Mult Scler Relat Disord. 2016;9:1–4. doi: 10.1016/j.msard.2016.06.002.
  21. Ghezzi A. Clinical characteristics of multiple sclerosis with early onset. Neurol Sci. 2004;25(4):336–339. doi: 10.1007/s10072-004-0336-y.
  22. Menascu S, Khavkin Y, Zilkha-Falb R et al. Clinical and transcriptional recovery profiles in pediatric and adult multiple sclerosis patients. Ann Clin Transl Neurol. 2021;8(1):81–94. doi: 10.1002/acn3.51244.
  23. Duignan S, Brownlee W, Wassmer E et al. Paediatric multiple sclerosis: A new era in diagnosis and treatment. Dev Med Child Neurol. 2019;61(9):1039–1049. doi: 10.1111/dmcn.14212.
  24. Jakimovski D, Awan S, Eckert SP et al. Multiple sclerosis in children: Differential diagnosis, prognosis, and disease-modifying treatment. CNS Drugs. 2022;36(1):45–59. doi: 10.1007/s40263-021-00887-w.
  25. Amato MP, Krupp LB, Charvet LE et al. Pediatric multiple sclerosis: Cognition and mood. Neurology. 2016;87(9(2)):82–87. doi: 10.1212/WNL.0000000000002883.
  26. Julian L, Serafin D, Charvet L et al. Cognitive impairment occurs in children and adolescents with multiple sclerosis: Results from a United States network. J Child Neurol 2013; 28:102–107. doi: 10.1177/0883073812464816.
  27. Öztürk Z, Gücüyener K, Soysal Ş et al. Cognitive functions in pediatric multiple sclerosis: 2-years follow-up. Neurological Research. 2020;42(2):159–163. doi: 10.1080/01616412.2019.1710417.
  28. Alroughani R, Boyko A. Pediatric multiple sclerosis: A review. BMC Neurol. 2018;18(1):27. doi: 10.1186/s12883-018-1026-3.
  29. Thompson AJ, Banwell BL, Barkhof F et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–173. doi: 10.1016/S1474-4422(17)30470-2.
  30. Krupp LB, Tardieu M, Amato MP et al; International Pediatric Multiple Sclerosis Study Group. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: Revisions to the 2007 definitions. Mult Scler. 2013;19(10):1261–1267. doi: 10.1177/1352458513484547.
  31. Rubin JP, Kuntz NL. Diagnostic criteria for pediatric multiple sclerosis. Curr Neurol Neurosci Rep. 2013;13(6):354. doi: 10.1007/s11910-013-0354-3.
  32. Brola W, Steinborn B. Pediatric multiple sclerosis — current status of epidemiology, diagnosis and treatment. Neurol Neurochir Pol. 2020;54(6):508–517. doi: 10.5603/PJNNS.a2020.0069.
  33. Kaunzner UW, Gauthier SA. MRI in the assessment and monitoring of multiple sclerosis: An update on best practice. Ther Adv Neurol Disord. 2017;10(6):247–261. doi: 10.1177/1756285617708911.
  34. Barraza G, Deiva K, Husson B, Adamsbaum C. Imaging in pediatric multiple sclerosis: An iconographic review. Clin Neuroradiol. 2021;31(1):61–71. doi: 10.1007/s00062-020-00929-8.
  35. Waubant E, Chabas DC, Okuda DT et al. Difference in disease burden and activity in pediatric patients on brain magnetic resonance imaging at time of MS onset vs adults. Arch Neurol. 2009;66(8):967–971. doi: 10.1001/archneurol.2009.135.
  36. Chabas D, McCulloch C, Strober J et al. Age modifies MS phenotype at onset. Mult Scler. 2008;14(1):61.
  37. Mesaros S, Rocca MA, Absinta M et al. Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology 2008;70:1107–1112. doi: 10.1212/01.wnl.0000291010.54692.85.
  38. Till C, Ghassemi R, Aubert-Broche B et al. MRI correlates of cognitive impairment in childhood-onset multiple sclerosis. Neuropsychology. 2011;25:319–332. doi: 10.1037/a0022051.
  39. Aubert-Broche B, Fonov V, Narayanan S et al; Canadian Pediatric Demyelinating Disease Network. Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth. Neurology. 2014;83(23):2140–2146. doi: 10.1212/WNL.0000000000001045.
  40. Kerbrat A, Aubert-Broche B, Fonov V et al. Reduced head and brain size for age and disproportionately smaller thalami in child-onset MS. Neurology. 2012;78(3):194–201. doi: 10.1212/WNL.0b013e318240799a.
  41. Waldman A, Ghezzi A, Bar-Or A et al. Multiple sclerosis in children: An update on clinical diagnosis, therapeutic strategies, and research. Lancet Neurol. 2014;13:936–948. doi: 10.1016/S1474-4422(14)70093-6.
  42. Mikaeloff Y, Caridade G, Assi S et al. Prognostic factors for early severity in a childhood multiple sclerosis cohort. Pediatrics. 2006;118(3):1133–1139. doi: 10.1542/peds.2006-0655.
  43. Hottenrott T, Dersch R, Berger B et al. The intrathecal, polyspecific antiviral immune response in neurosarcoidosis, acute disseminated encephalomyelitis and autoimmune encephalitis compared to multiple sclerosis in a tertiary hospital cohort. Fluids Barriers CNS. 2015;12:27. doi: 10.1186/s12987-015-0024-8.
  44. Pohl D, Rostasy K, Reiber H et al. CSF characteristics in early-onset multiple sclerosis. Neurology. 2004;63(10):1966–1967. doi: 10.1212/01.wnl.0000144352.67102.bc.
  45. Hacohen Y, Mankad K, Chong WK et al. Diagnostic algorithm for relapsing acquired demyelinating syndromes in children. Neurology. 2017;89(3):269–278. doi: 10.1212/WNL.0000000000004117.
  46. Jarius S, Paul F, Aktas O et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation. 2018;15(1):134. doi: 10.1186/s12974-018-1144-2.
  47. Ghezzi A, Banwell B, Boyko A et al. The management of multiple sclerosis in children: A European view. Mult Scler. 2010;16(10):1258–1267. doi: 10.1177/1352458510375568.
  48. Lattanzi S, Cagnetti C, Danni M et al. Oral and intravenous steroids for multiple sclerosis relapse: A systematic review and meta-analysis. J Neurol. 2017;264(8):1697–1704. doi: 10.1007/s00415-017-8505-0.
  49. Chitnis T, Ghezzi A, Bajer-Kornek B et al. Pediatric multiple sclerosis: Escalation and emerging treatments. Neurology. 2016;87(9(2)):103–109. doi: 10.1212/WNL.0000000000002884.
  50. Tenembaum SN, Banwell B, Pohl D et al; REPLAY Study Group. Subcutaneous Interferon beta-1a in pediatric multiple sclerosis: a retrospective study. J Child Neurol. 2013;28(7):849–856. doi: 10.1177/0883073813488828.
  51. Yeh EA, Waubant E, Krupp LB et al. Multiple sclerosis therapies in pediatric patients with refractory multiple sclerosis. Arch Neurol. 2011;(68):437–444. doi: 10.1001/archneurol.2010.325.
  52. Baroncini D, Zaffaroni M, Moiola L et al. Long-term follow-up of pediatric MS patients starting treatment with injectable first-line agents: A multicentre, Italian, retrospective, observational study. Mult Scler. 2019(25):399–407. doi: 10.1177/1352458518754364.
  53. Chitnis T, Arnold DL, Banwell B et al; PARADIGMS Study Group. Trial of Fingolimod versus Interferon beta-1a in pediatric multiple sclerosis. N Engl J Med. 2018;379(11):1017–1027. doi: 10.1056/NEJMoa1800149.
  54. Deiva K, Huppke P, Banwell B et al. Consistent control of disease activity with Fingolimod versus IFN β-1a in paediatric-onset multiple sclerosis: Further insights from PARADIGMS. J Neurol Neurosurg Psychiatry. 2020;91(1):58–66. doi: 10.1136/jnnp-2019-321124.
  55. Chitnis T, Banwell B, Kappos L et al; TERIKIDS Investigators. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): A multicentre, double-blind, phase 3, randomised, placebo-controlled trial. Lancet Neurol. 2021;20(12):1001–1011. doi: 10.1016/S1474-4422(21)00364-1.
  56. Ribbons KA, McElduff P, Boz C et al. Male sex is independently associated with faster disability accumulation in relapse-onset MS but not in primary Progressive MS. PLoS One. 2015;10(6):1–11. doi: 10.1371/journal.pone.0122686.
  57. Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019;156(1):9–22. doi: 10.1111/imm.13004.
  58. Finkelsztejn A, Brooks JB, Paschoal FM Jr et al. What can we really tell women with multiple sclerosis regarding pregnancy? A systematic review and meta-analysis of the literature. BJOG. 2011;118(7):790–797. doi: 10.1111/j.1471-0528.2011.02931.x.
  59. Costanza M, Pedotti R. Prolactin: Friend or foe in central nervous system autoimmune inflammation? Int J Mol Sci. 2016;17(12):2026. doi: 10.3390/ijms17122026.
  60. Zhornitsky S, Yong VW, Weiss S, Metz LM. Prolactin in multiple sclerosis. Mult Scler. 2013;19(1):15–23. doi: 10.1177/1352458512458555.
  61. De Carvalho Jennings Pereira WL, Flauzino T, Alfieri DF et al. Prolactin is not associated with disability and clinical forms in patients with multiple sclerosis. Neuromolecular Med. 2020;22(1):73–80. doi: 10.1007/s12017-019-08565-3.
  62. Sicotte NL, Liva SM, Klutch R et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol. 2002;52(4):421–428. doi: 10.1002/ana.10301.
  63. Soldan SS, Alvarez Retuerto AI, Sicotte NL, Voskuhl RR. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J Immunol. 2003;171(11):6267–6274. doi: 10.4049/jimmunol.171.11.6267.
  64. Voskuhl RR, Wang H, Wu TC et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: A randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(1):35–46. doi: 10.1016/S1474-4422(15)00322-1.
  65. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521–574. doi: 10.1210/er.2007-0001.
  66. Bove R, Chitnis T. The role of gender and sex hormones in determining the onset and outcome of multiple sclerosis. Multiple Sclerosis Journal. 2014;20(5):520–526. doi: 10.1177/1352458513519181.
  67. Sloka JS, Pryse-Phillips WE, Stefanelli M. The relation between menarche and the age of first symptoms in a multiple sclerosis cohort. Mult Scler. 2006;12(3):333–339. doi: 10.1191/135248506ms1267oa.
  68. Bove R, Chua AS, Xia Z et al. Complex relation of HLA-DRB1*1501, age at menarche, and age at multiple sclerosis onset. Neurol Genet. 2016;2(4):1–7. doi: 10.1212/NXG.0000000000000088.
  69. Ramagopalan SV, Valdar W, Criscuoli M et al; Canadian Collaborative Study Group. Age of puberty and the risk of multiple sclerosis: A population based study. Eur J Neurol. 2009;16(3):342–347. doi: 10.1111/j.1468-1331.2008.02431.x.
  70. Lulu S, Graves J, Waubant E. Menarche increases relapse risk in pediatric multiple sclerosis. Mult Scler. 2016;22:193–200. doi: 10.1177/1352458515581873.
  71. Bykova OV, Khachatryan LG, Goltsova NG et al. Serum prolactin level in patients with pediatric multiple sclerosis. New Armenian Medical Journal. 2016;10(3):58–64.
  72. Mexhitaj I, Nyirenda MH, Li R et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain. 2019;142(3):617–632. doi: 10.1093/brain/awz017.
  73. Balint B, Haas J, Schwarz A et al. T-cell homeostasis in pediatric multiple sclerosis: Old cells in young patients. Neurology. 2013;81(9):784–792. doi: 10.1212/WNL.0b013e3182a2ce0e.
  74. Schwarz A, Balint B, Korporal-Kuhnke M et al. B-cell populations discriminate between pediatric- and adult-onset multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;4(1):1–9. doi: 10.1212/NXI.0000000000000309.
  75. Lyakh LA, Sanford M, Chekol S et al. TGF-beta and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells. J Immunol. 2005;174(4):2061–2070. doi: 10.4049/jimmunol.174.4.2061.
  76. Chen S, Sims GP, Chen XX et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634–1647. doi: 10.4049/jimmunol.179.3.1634.
  77. Penna G, Amuchastegui S, Cossetti C et al. Treatment of experimental autoimmune prostatitis in nonobese diabetic mice by the vitamin D receptor agonist elocalcitol. J Immunol. 2006;177(12):8504–8511. doi: 10.4049/jimmunol.177.12.8504.
  78. Ramagopalan SV, Maugeri NJ, Handunnetthi L et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet. 2009;5(2):1–6. doi: 10.1371/journal.pgen.1000369.
  79. Gregori S, Giarratana N, Smiroldo S et al. A 1alpha,25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes. 2002;51(5):1367–1374. doi: 10.2337/diabetes.51.5.1367.
  80. Mowry EM, Krupp LB, Milazzo M et al. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann Neurol. 2010;67(5):618–624. doi: 10.1002/ana.21972.

Copyright (c) 2023 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies