ASTROCYTES AND PLASTICITY OF SYNAPSES. PART I. SYNAPTOGENIC MOLECULES


Cite item

Full Text

Abstract

The high level of plasticity of the brain is mainly determined by the behavior of synapses, which can change their structure, functional activity; they can form again or disappear throughout the life cycle. Synapses are closely related to the presynaptic processes of astrocytes, which induce education, consolidate the structure and support the function of synapses, as well as participate in their elimination. Astrocytes produce numerous synaptonemal molecules that bind to the neurons and control synaptic plasticity. The review deals with the molecular aspects of violations of the mechanisms of interaction of astrocytes with synapses, which are crucial in the pathogenesis of a number of cognitive impairment.

About the authors

Vadim N Shvalev

National medical research cardiology center

Email: vadim.shvalev@mail.ru
121552, Moscow, 3rd Cherepkovsky street, 15А

Alexander A Sosunov

Columbia University

Email: aas190@cumc.columbia.edu
New York, 10032, USA

Yury A Chelyshev

Kazan state medical university

Email: chelyshev-kzn@yandex.ru
420012, Казань, Butlerov street, 49

References

  1. Allen N.J., Bennett M.L., Foo L.C. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors // Nature. 2012. Vol. 486, № 7403. P. 410-414.
  2. Amaratunga A., Abraham C.R., Edwards R.B. et al. Apolipoprotein E is synthesized in the retina by Muller glial cells, secreted into the vitreous, and rapidly transported into the optic nerve by retinal ganglion cells // J Biol Chem. 1996. Vol. 271, № 10. P. 5628-5632.
  3. Bailey D.B., Jr., Berry-Kravis E., Wheeler A. et al. Mavoglurant in adolescents with fragile X syndrome: analysis of clinical global impression-improvement source data from a double-blind therapeutic study followed by an open-label, long-term extension study // J Neurodev Disord. 2016. Vol. 8. P. 1.
  4. Ballas N., Lioy D.T., Grunseich C., Mandel G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology // Nat Neurosci. 2009. Vol. 12. P. 311-317.
  5. Barker A.J., Koch S.M., Reed J. et al. Developmental control of synaptic receptivity // J Neurosci. 2008. Vol. 28, № 33. P. 8150-8160.
  6. Bear M.F., Huber K.M., Warren S.T. The mGluR theory of fragile X mental retardation // Trends Neurosci. 2004. Vol. 27. P. 370-377.
  7. Bialas A.R., Stevens B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement // Nat Neurosci. 2013. Vol. 16, № 12. P. 1773-1782.
  8. Bosworth A.P., Allen N.J. The diverse actions of astrocytes during synaptic development // Curr Opin Neurobiol. 2017. Vol. 47. P. 38-43.
  9. Castagnola S., Bardoni B., Maurin T. The search for an effective therapy to treat fragile X syndrome: dream or reality? // Front Synaptic Neurosci. 2017. Vol. 9. P. 15.
  10. Chahrour M., Zoghbi H.Y. The story of Rett syndrome: from clinic to neurobiology // Neuron. 2007. Vol. 56. P. 422-437.
  11. Cheng C., Lau S.K., Doering L.C. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model // Mol Brain. 2016. Vol. 9, № 1. P. 74.
  12. Christopherson K.S., Ullian E.M., Stokes C.C. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis // Cell. 2005. Vol. 120, № 3. P. 421-433.
  13. Chung W.S., Clarke L.E., Wang G.X. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways // Nature. 2013. Vol. 504, № 7480. P. 394-400.
  14. Cruchaga C., Kauwe J.S., Nowotny P. et al. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease // Hum Mol Genet. 2012. Vol. 2, № 20. P. 4558-4571.
  15. DeMattos R.B., Rudel L.L., Williams D.L. Biochemical analysis of cell-derived apoE3 particles active in stimulating neurite outgrowth // J Lipid Res. 2001. Vol. 42, № 6. P. 976-987.
  16. Diniz L.P., Almeida J.C., Tortelli V. et al. Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons // J Biol Chem. 2012. Vol. 287, № 49. P. 41432-41445.
  17. Diniz L.P., Tortelli V., Garcia M.N. et al. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling // Glia. 2014. Vol. 62, № 12. P. 1917-1931.
  18. Edmonson C., Ziats M.N., Rennert O.M. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum // Mol Autism. 2014. Vol. 5. P. 3.
  19. Eroglu C., Allen N.J., Susman M.W. et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis // Cell. 2009. Vol. 139, № 2. P. 380-392.
  20. Farhy-Tselnicker I., van Casteren A.C.M., Lee A. et al. Astrocyte-Secreted Gglypican 4 regulates release of neuronal pentraxin 1 from axons to induce functional synapse formation // Neuron. 2017. Vol. 96, № 2. P. 428-453.
  21. Garcia O., Torres M., Helguera P. et al. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome // PLoS One. 2010. Vol. 5, № 12. P. 14200.
  22. Goritz C., Mauch D.H., Pfrieger F.W. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron // Mol Cell Neurosci. 2005. Vol. 29, № 2. P. 190-201.
  23. Hama H., Hara C., Yamaguchi K., Miyawaki A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes // Neuron. 2004. Vol. 41, № 3. P. 405-415.
  24. Han C., Chaineau M., Chen C.X. et al. Open science meets stem cells: A new drug discovery approach for neurodegenerative disorders // Front Neurosci. 2018. Vol. 12. P. 47.
  25. Han D., Jin J., Woo J., Min H., Kim Y. Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and Stage Tip-based, high pH, reversed-phase fractionation // Proteomics. 2014. Vol. 14, № 13. P. 1604-1609.
  26. Hanse E., Seth H., Riebe I. AMPA-silent synapses in brain development and pathology // Nat Rev Neurosci. 2013 Dec. Vol.14(12). P. 839-850. doi: 10.1038/nrn3642.
  27. Higashimori H., Schin C.S., Chiang M.S. et al. Selective deletion of astroglial FMRP dysregulates glutamate transporter GLT1 and contributes to fragile X syndrome phenotypes in Vivo // J Neurosci. 2016. Vol. 36. P. 7079-7094.
  28. Hodges J.L., Yu X., Gilmore A. et al. Astrocytic contributions to synaptic and learning abnormalities in a mouse model of fragile X syndrome // Biol Psychiatry. 2017. Vol. 82. P. 139-149.
  29. Irwin S.A., Patel B., Idupulapati M. et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination // Am J Med Genet. 2001. Vol. 98. P. 161-167.
  30. Jawaid S., Kidd G.J., Wang J. et al. Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome // Glia. 2018. Vol. 66. P. 789-800.
  31. John Lin C.C., Yu K., Hatcher A. et al. Identification of diverse astrocyte populations and their malignant analogs // Nat Neurosci. 2017. Vol. 20, № 3. P. 396-405.
  32. Karten B., Peake K.B., Vance J.E. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells // Biochim Biophys Acta. 2009. Vol. 1791, № 7. P. 659-670.
  33. Kucukdereli H., Allen N.J., Lee A.T. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC // Proc Natl Acad Sci U S A. 2011. Vol. 108, № 32. P. 440-449.
  34. Li J., Vestergaard M., Obel C. et al. A nationwide study on the risk of autism after prenatal stress exposure to maternal bereavement // Pediatrics. 2009. Vol. 123. P. 1102-1107.
  35. Lioy D.T., Garg S.K., Monaghan C.E. et al. A role for glia in the progression of Rett’s syndrome // Nature. 2011. Vol. 475. P. 497-500.
  36. Lively S., Brown I.R. The extracellular matrix protein SC1/Hevin localizes to multivesicular bodies in Bergmann glial fibers in the adult rat cerebellum // Neurochem Res. 2010. Vol. 35, № 2. P. 315-322.
  37. Mauch D.H., Nagler K., Schumacher S. et al. CNS synaptogenesis promoted by glia-derived cholesterol // Science. 2001. Vol. 294, № 5545. P. 1354-1357.
  38. Maurin T., Zongaro S., Bardoni B. Fragile X. syndrome: from molecular pathology to therapy // Neurosci Biobehav Rev. 2014. Vol. 46. Pt. 2. P. 242-255.
  39. Meyer-Franke A., Kaplan M.R., Pfrieger F.W., Barres B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture // Neuron. 1995. Vol. 15, № 4. P. 805-819.
  40. Miyazaki S., Hiraoka Y., Hidema S., Nishimori K. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice // Biochem Biophys Res Commun. 2016. Vol. 472. P. 319-323.
  41. Molofsky A.V., Kelley K.W., Tsai H.H. et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity // Nature. 2014. Vol. 509, № 7499. P. 189-194.
  42. Murai K.K., Nguyen L.N., Irie F. et al. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling // Nat Neurosci. 2003. Vol. 6, № 2. P. 153-160.
  43. Nagler K., Mauch D.H., Pfrieger F.W. Glia-derived signals induce synapse formation in neurones of the rat central nervous system // J Physiol. 2001. Vol. 15, № 533. P. 665-679.
  44. Okabe Y., Takahashi T., Mitsumasu C. et al. Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome // PLoS One. 2012. Vol. 7. e35354.
  45. Pacey L.K., Doering L.C. Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome // Glia. 2007. Vol. 55. P. 1601-1609.
  46. Piochon C., Kloth A.D., Grasselli G. et al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism // Nat Commun. 2014. Vol. 5. P. 5586.
  47. Risher W.C., Patel S., Kim I.H. et al. Astrocytes refine cortical connectivity at dendritic spines // Elife. 2014. Vol. 17. P. 3.
  48. Russo F.B., Freitas B.C., Pignatari G.C. et al. Modeling the Interplay Between Neurons and Astrocytes in Autism Using Human Induced Pluripotent Stem Cells // Biol Psychiatry. 2018. Vol. 83. P. 569-578.
  49. Sevin M., Lesca G., Baumann N. et al. The adult form of Niemann-Pick disease type C // Brain. 2007. Vol. 130. P. 120-133.
  50. Singh S.K., Stogsdill J.A., Pulimood N.S. et al. Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via hevin // Cell. 2016. Vol. 164. P. 183-196.
  51. Sudhof T.C. Neuroligins and neurexins link synaptic function to cognitive disease // Nature. 2008. Vol. 455, № 7215. P. 903-911.
  52. Sudhof T.C. Synaptic Neurexin Complexes: A molecular code for the logic of neural circuits // Cell. 2017. Vol. 171, № 4. P. 745-769.
  53. Tanasic S., Mattusch C., Wagner E.M. et al. Desipramine targets astrocytes to attenuate synaptic plasticity via modulation of the ephrinA3/EphA4 signalling // Neuropharmacology. 2016. Vol. 105. P. 154-163.
  54. Tang G., Gudsnuk K., Kuo S.H. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits // Neuron. 2014. Vol. 83. P. 1131-1143.
  55. Ullian E.M., Sapperstein S.K., Christopherson K.S., Barres B.A. Control of synapse number by glia // Science. 2001. Vol. 291, № 5504. P. 657-661.
  56. van Deijk A.F., Camargo N., Timmerman J. et al. Astrocyte lipid metabolism is critical for synapse development and function in vivo // Glia. 2017. Vol. 65, № 4. P. 670-682.
  57. Voineagu I., Wang X., Johnston P. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology // Nature. 2011. Vol. 474. P. 380-384.
  58. Wallingford J., Scott A.L., Rodrigues K., Doering L.C. Altered developmental expression of the astrocyte-secreted factors Hevin and SPARC in the fragile X mouse model // Front Mol Neurosci. 2017. Vol. 10. P. 268.
  59. Wei H., Zou H., Sheikh A.M. et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation // J Neuroinflammation. 2011. Vol. 8. P. 52.
  60. Xu X., Miller E.C., Pozzo-Miller L. Dendritic spine dysgenesis in Rett syndrome // Front Neuroanat. 2014. Vol. 8. P. 97.
  61. Yang Q., Feng B., Zhang K. et al. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome // PLoS Genet. 2012. Vol. 8. e1003172.
  62. Youssef E.A., Berry-Kravis E., Czech C. et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: FragXis phase 2 results // Neuropsychopharmacology. 2018. Vol. 43. P. 503-512.
  63. Zoghbi H.Y. Rett syndrome: what do we know for sure? // Nat Neurosci. 2009. Vol. 12. P. 239-240.

Copyright (c) 2018 Shvalev V.N., Sosunov A.A., Chelyshev Y.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies