Rho/ROCK signaling pathway after spinal cord injury


Cite item

Full Text

Abstract

Small Rho GTPases act through the Rho-associated kinase (ROCK) activated by them, and control the migration, proliferation and death of neural cells and reactive astrogliosis. The Rho/ROCK signal pathway mediates the effect of endogenous axons growth inhibitors from myelin, oligodendrocytes and glial scar and it is activated in spinal cord trauma, which leads to an increased inflammatory response, neuropathic pain, demyelination, cell death, inhibition of axon growth, and impaired function. After spinal cord injury under conditions of pharmacological inhibition of Rho/ROCK was shown increased level of growth and branching, increased plasticity of neuronal structures and intercellular communications, neuroprotective effect, increased remyelinization and improved function. In addition to selective inhibitors of RhoA (ADP-ribosyltransferase C3) and ROCK (Fasudil, Y-27632 and Y-39983), the ability to inhibit Rho/ROCK was indicated for non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin, as well as for statins.

About the authors

Yuri A Chelyshev

Kazan State medical university

Email: chelyshev-kzn@yandex.ru
Butlerov str., 49, Kazan, 420012

Maksum F Ismagilov

Kazan State medical university

Butlerov str., 49, Kazan, 420012

Yana O Mukhamedshina

Kazan State medical university

Butlerov str., 49, Kazan, 420012

Tatyana V Povysheva

Kazan State medical university

Butlerov str., 49, Kazan, 420012

Natalya V Boychuk

Kazan State medical university

Butlerov str., 49, Kazan, 420012

References

  1. Челышев Ю.А., Шаймарданова Г.Ф., Мухамедшина Я.О., Нигметзянова М.В. Глиальные барьеры при травме спинного мозга как мишень генно-клеточной терапии // Неврологический вестник. 2013. Т. 45, №1. С. 87-93.
  2. Anderson M.A., Burda J.E., Ren Y. et al. Astrocyte scar formation aids CNS axon regeneration // Nature. 2016. Vol. 532. P. 195-200.
  3. Baer A.S., Syed Y.A., Kang S.U. et al. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signaling // Brain. 2009. Vol. 132. P. 465-481.
  4. Cahoy J.D., Emery B., Kaushal A. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function // J. Neurosci. 2008. № 28. P. 264-278.
  5. Challagundla M., Koch J.C., Ribas V.T. et al. AAV-mediated expression of BAG1 and ROCK2-shRNA promote neuronal survival and axonal sprouting in a rat model of rubrospinal tract injury // J Neurochem. 2015. Vol. 134, № 2. P. 261-275.
  6. Chen C., Yu J.Z., Zhang Q. et al. Role of Rho Kinase and Fasudil on Synaptic Plasticity in Multiple Sclerosis // Neuromolecular. Med. 2015. Vol. 17, № 4. P. 454-465.
  7. Chiba Y., Kuroda S., Shichinohe H., et al. Synergistic effects of bone marrow stromal cells and a Rho kinase (ROCK) inhibitor, fasudil on axon regeneration in rat spinal cord injury // Neuropathology. 2010. Vol. 30, № 3. P. 241-250.
  8. Chung W.F., Liu S.W., Chang P.Y. et al. Hyperlipidemia and statins affect neurological outcome in lumbar spine injury // Int. J. Environ. Res. Public Health. 2015. Vol. 12, № 1. P. 402-413.
  9. Ding S., Bao Y., Lin Y. et al. Neuroprotective effect of functionalized multi-walled carbon nanotubes on spinal cord injury in rats // Int. J. Clin. Exp. Pathol. 2015. Vol. 8, № 12. P. 15769-15777.
  10. Ding J., Yu J.Z., Li Q.Y. et al. Rho kinase inhibitor Fasudil induces neuroprotection and neurogenesis partially through astrocyte-derived G-CSF // Brain Behav. Immun. 2009. Vol.23. P. 1083-1088.
  11. Drummond E.S., Rodger J., Penrose M. et al. Effects of intravitreal injection of a Rho-GTPase inhibitor (BA-210), or CNTF combined with an analogue of cAMP, on the dendritic morphology of regenerating retinal ganglion cells // Restor. Neurol. Neurosci. 2014. Vol. 32. P. 391-402.
  12. Dubreuil C.I., Winton M.J., McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system // J. Cell Biol. 2003. Vol. 162. P. 233-243.
  13. Erschbamer M.K., Hofstetter C.P., Olson L. RhoA, RhoB, RhoC, Rac1, Cdc42, and Tc10 mRNA levels in spinal cord, sensory ganglia, and corticospinal tract neurons and long-lasting specific changes following spinal cord injury // J. Comp. Neurol. 2005. Vol. 484. P. 224-233.
  14. Furuya T., Hashimoto M., Koda M., et al. Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation // Brain Res. 2009. №. 1295. P. 192-202.
  15. Gao S., Zhang Z.M., Shen Z.L. et al. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury // Neural. Regen. Res. 2016. Vol. 11, № 6. P. 977-982.
  16. Gwak S.J., Macks C., Jeong D.U. et al. RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model // Biomaterials. 2017. № 121. P. 155-166.
  17. Hou X.L., Chen Y., Yin H., Duan W.G. Combination of fasudil and celecoxib promotes the recovery of injured spinal cord in rats better than celecoxib or fasudil alone // Neural Regen. Res. 2015. Vol. 10, №. 11. P. 1836-1840.
  18. Huang S.Y., Sung C.S., Chen W.F. et al. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain // J. Neuroinflammation. 2015. Vol. 12. P. 59.
  19. Imai F., Ladle D.R., Leslie J.R. et al. Synapse Formation in Monosynaptic Sensory-Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42 // J. Neurosci. 2016. Vol. 36, №. 21. P. 5724-5735.
  20. Kahveci R., Gökçe E.C., Gürer B. et al. Neuroprotective effects of rosuvastatin against traumatic spinal cord injury in rats // Eur. J. Pharmacol. 2014. № 741. P. 45-54.
  21. Kesherwani V., Tarang S., Barnes R., Agrawal S.K. Fasudil reduces GFAP expression after hypoxic injury // Neurosci. Lett. 2014. № 576. P. 45-50.
  22. Kopp M.A., Liebscher T., Watzlawick. R. et al. SCISSOR-Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol // BMJ Open. 2016. Vol. 6, № 7.
  23. Lau C.L., O’Shea R.D., Broberg B.V. et al. The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin re-modelling in cultured murine astrocytes // Br. J. Pharmacol. 2011. № 163. P. 533-545.
  24. Le Comte M.D., Shimada I.S., Sherwin C., Spees J.L. Notch1-STAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury // Proc. Natl. Acad. Sci. USA. 2015. № 112. P. 8726-8731.
  25. Li Y.H., Yu J.W., Xi J.Y. et al. Fasudil enhances therapeutic efficacy of neural stem cells in the mouse model of MPTP-induced Parkinson’s disease // Mol. Neurobiol. 2016. [Epub ahead of print].
  26. Liu Y.H., Zhao Y., Huang F.Z. et al. Combination of early constraint-induced movement therapy and fasudil enhances motor recovery after ischemic stroke in rats // Int. J. Neurosci. 2016. Vol. 126. № 2. P. 168-173.
  27. Lord-Fontaine S., Yang F., Diep Q. et al. Local inhibition of Rho signaling by cell-permeable recombinant protein BA-210 prevents secondary damage and promotes functional recovery following acute spinal cord injury // J. Neurotrauma. 2008. №. 11. P. 1309-1322.
  28. Mattila P.K., Lappalainen P. Filopodia: Molecular architecture and cellular functions // Nat. Rev. Mol. Cell Biol. 2008. № 9. P. 446-454.
  29. McKerracher L., Anderson K.D. Analysis of recruitment and outcomes in the phase I/IIa Cethrin clinical trial for acute spinal cord injury // J Neurotrauma. 2013. № 30. P. 1795-1804.
  30. Mironova Y.A., Giger R.J. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength // Trends Neurosci. 2013. № 6. P. 363-373.
  31. Murk K., Blanco Suarez E.M., Cockbill L.M., et al. The antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology // J. Cell Sci. 2013, № 126. P. 3873-3883.
  32. Nazli Y., Colak N., Alpay M.F. et al. Neuroprotective effect of atorvastatin in spinal cord ischemia-reperfusion injury // Clinics (Sao Paulo). 2015. № 1. P. 52-60.
  33. Newell-Litwa K.A., Badoual M., Asmussen H., et al. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity // J. Cell. Biol. 2015. Vol. 210. № 2. P. 225-242.
  34. O’Shea R.D., Lau C.L., Zulaziz N.B. et al. Transcriptomic analysis and 3D bioengineering of astrocytes indicate ROCK inhibition produces cytotrophic astrogliosis // Front. Neurosci. 2015. № 9. P. 50.
  35. Pedraza C.E., Taylor C., Pereira A. et al. Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase // ASN Neuro. 2014. Vol. 6. № 4.
  36. Robin N.C., Agoston Z., Biechele T.L. et al. Simvastatin promotes adult hippocampal neurogenesis by enhancing Wnt/β-catenin signaling // Stem Cell Reports. 2013. Vol. 2. № 1. P. 9-17.
  37. Roloff F., Scheiblich H., Dewitz C. et al. Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling // PLoS One. 2015. Vol. 10. №. 2.
  38. Sagawa H., Terasaki H., Nakamura M. et al. A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats // Exp. Neurol. 2007. № 1. P. 230-240.
  39. Sheean R.K., Lau C.L., Shin Y.S. et al. Links between L-glutamate transporters, Na+/K+-ATPase and cytoskeleton in astrocytes: Evidence following inhibition with rottlerin // Neuroscience. 2013. № 254. P. 335-346.
  40. Sohn H.M., Hwang J.Y., Ryu J.H. et al. Simvastatin protects ischemic spinal cord injury from cell death and cytotoxicity through decreasing oxidative stress: in vitro primary cultured rat spinal cord model under oxygen and glucose deprivation-reoxygenation conditions // J. Orthop. Surg. Res. 2017. Vol. 12. № 1. P. 36.
  41. Swanger S.A., Mattheyses A.L., Gentry E.G., Herskowitz J.H. ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons // Cell. Logist. 2016. Vol. 5. №. 4.
  42. Tarabal O., Caraballo-Miralles V., Cardona-Rossinyol A. et al. Mechanisms involved in spinal cord central synapse loss in a mouse model of spinal muscular atrophy // J. Neuropathol. Exp. Neurol. 2014. Vol. 73. № 6. P. 519-535.
  43. Tokushige H., Inatani M., Nemoto S. et al. Effects of topical administration of y-39983, a selective rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys // Invest. Ophthalmol. Vis. Sci. 2007. Vol. 48. № 7. P. 3216-3122.
  44. Watzlawick R., Sena E.S., Dirnag U. et al. Effect and reporting bias of RhoA/ROCK-blockade intervention on locomotor recovery after spinal cord injury: a systematic review and meta-analysis // JAMA Neurol. 2014. Vol. 71. № 1. P. 91-99.
  45. Wennerberg K., Rossman K.L., Der C.J. The Ras superfamily at a glance // J. Cell. Sci. 2005. Vol. 1. № 118. P. 843-846.
  46. Williams M.R., DeSpenza T.Jr., Li M. et al. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive // J. Neurosci. 2015. Vol. 35. № 3. P. 943-959.
  47. Yano K., Kawasaki K., Hattori T. et al. Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction // Eur. J. Pharmacol. 2008. № 594. P. 77-83.
  48. Yu J.W., Li Y.H., Song G.B. et al. Synergistic and superimposed effect of bone marrow-derived mesenchymal stem cells combined with fasudil in experimental autoimmune encephalomyelitis // J. Mol. Neurosci. 2016. Vol. 60. № 4. P. 486-497.
  49. Yu J.Z., Chen C., Zhang Q. et al. Changes of synapses in experimental autoimmune encephalomyelitis by using Fasudil // Wound Repair Regen. 2016. Vol. 24. № 2. P. 317-327.
  50. Zhang C., Wu J.M., Liao M. et al. The ROCK/GGTase pathway are essential to the proliferation and differentiation of neural stem cells mediated by simvastatin // J. Mol. Neurosci. 2016. Vol. 60. № 4. P. 474-485.

Copyright (c) 2017 Chelyshev Y.A., Ismagilov M.F., Mukhamedshina Y.O., Povysheva T.V., Boychuk N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies