Some theoretical models of addictive disorder are used for behavioral transformation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Existential, neurobiological and cognitive models of addictive behavior are considered as a theoretical basis for transformational therapy of addictive disorders. The NMDA receptor antagonist ketamine, which has neurotrophic, modulatory and psychedelic effects, demonstrates the universal properties of a transforming agent for any of the presented concepts of addictive behavior. Since persistent mental and behavioral changes essentially are psychobiological changes, the substrate that determines the effectiveness of the intervention is synaptic plasticity and neural network remodeling.

About the authors

Mikhail L. Zobin

Centre of transformational therapy of addictions

Author for correspondence.
Email: doctor.zobin@gmail.com
ORCID iD: 0000-0002-8239-3770
SPIN-code: 2440-1383

M.D., Cand. Sci. (Med.)

Montenegro, Kotor

References

  1. Kalivas PW, O’Brien C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology. 2008;33:166–180. doi: 10.1038/sj.npp.1301564.
  2. Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell. 2015;162:712–725. doi: 10.1016/j.cell.2015.07.046
  3. Jones JL, Mateus CF, Malcolm RJ et al. Efficacy of ketamine in the treatment of substance use disorders: A systematic review. Front Psychiatry. 2018;9:277. doi: 10.3389/fpsyt.2018.00277.
  4. Kolp E, Friedman HL, Krupitsky E et al. Ketamine psychedelic psychotherapy: Focus on its pharmacology, phenomenology, and clinical applications. International Journal of Transpersonal Studies. 2014;33(2):84–140.
  5. Krupitskiy EM, Grinenko AYa. Stabilizatsiya remissiy pri alkogolizme (putem ketaminovoy terapii). SPb.: Gippokrat; 1996. 95 р. (In Russ.)
  6. Krupitsky E, Burakov A, Romanova T et al. Ketamine psychotherapy for heroin addiction: Immediate effects and two-year follow-up. J Subst Abuse Treat. 2002;23:273–283. doi: 10.1016/s0740-5472(02)00275-1.
  7. Krupitsky EM. Ketamine psychedelic therapy (KPT) of alcoholism and neurosis. Multidisciplinary Association for Psychedelic Studies Newsletter. 1992;3:24–28.
  8. Krupitsky EM, Grinenko AY. Ketamine psychedelic therapy (KPT): A review of the results of ten years of research. J Psychoactive Drugs. 1997;29:165–183. doi: 10.1080/02791072.1997.10400185.
  9. Krupitsky EM, Grinenko AYa, Berkaliev TN et al. The combination of psychedelic and aversive approaches in alcoholism treatment: the affective contra-attribution method. Alcoholism Treatment Quarterly. 1992;9:99–105.
  10. Carhart-Harris RL. How do psychedelics work? Curr Opin Psychiatry. 2019;32(1):16–21. doi: 10.1097/YCO.0000000000000467.
  11. Dakwar E, Anerella C, Hart CL et al. Therapeutic infusions of ketamine: do the psychoactive effects matter? Drug Alcohol Depend. 2014;136:153–157. doi: 10.1016/j.drugalcdep.2013.12.019.
  12. Majić T, Schmidt TT, Gallinat J. Peak experiences and the afterglow phenomenon: when and how do therapeutic effects of hallucinogens depend on psychedelic experiences? J Psychopharmacol. 2015;29(3):241–253. doi: 10.1016/j.drugalcdep.2013.12.019.
  13. Mollaahmetoglu OM, Keeler J, Ashbullby KJ et al. “This is something that changed my life”: A qualitative study of patients’ experiences in a clinical trial of ketamine treatment for alcohol use disorders. Front Psychiatry. 2021;12:695335. doi: 10.3389/fpsyt.2021.695335.
  14. Rothberg RL, Azhari N, Haug NA, Dakwar E. Mystical-type experiences occasioned by ketamine mediate its impact on at-risk drinking: Results from a randomized, controlled trial. J Psychopharmacol. 2021;35(2):150–158. doi: 10.1177/0269881120970879.
  15. Grof S. My ketamine journeys, or ketamine and the enchantment of other worlds. In: The ketamine papers: Science, therapy, and transformation / Ed. By P. Wolfson, G. Hartelius. Santa Cruz, CA: MAPS; 2016. p. 39–47.
  16. Metzner R. John Lilly and ketamine: Some personal recollections. In: The ketamine papers: Science, therapy, and transformation / Ed. by P. Wolfson, G. Hartelius. Santa Cruz, CA: MAPS; 2016. p. 47–51.
  17. Dakwar E, Nunes EV, Hart CL et al. A sub-set of psychoactive effects may be critical to the behavioral impact of ketamine on cocaine use disorder: Results from a randomized, controlled laboratory study. Neuropharmacology. 2018;142:270–276. doi: 10.1016/j.neuropharm.2018.01.005.
  18. Ivan Ezquerra-Romano I, Lawn W, Krupitsky E, Morgan CJA. Ketamine for the treatment of addiction: Evidence and potential mechanisms. Neuropharmacology. 2018;1(42):72–82. doi: 10.1016/j.neuropharm.2018.01.017.
  19. Gardner EL. Addiction and brain reward and antireward pathways. Adv Psychosom Med. 2011;30:22–60. doi: 10.1159/000324065.
  20. Koob GF. Antireward, compulsivity, and addiction: Seminal contributions of Dr. Athina Markou to motivational dysregulation in addiction. Psychopharmacology (Berl). 2017;234(9–10):1315–1332. doi: 10.1007/s00213-016-4484-6.
  21. Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling. Neuron. 2011;69(4):650–663. doi: 10.1016/j.neuron.2011.01.017.
  22. Volkow ND, Michaelides M, Baler R. The neuroscience of drug reward and addiction. Physiol Rev. 2019;99(4):2115–2140.
  23. Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci. 2020;21(11):611–624. doi: 10.1038/s41583-020-0367-2.
  24. Gopinath K, Maltbie E, Urushino N et al. Ketamine-induced changes in connectivity of functional brain networks in awake female nonhuman primates: A translational functional imaging model. Psychopharmacology (Berl). 2016;233(21–22):3673–3684. doi: 10.1007/s00213-016-4401-z.
  25. Maltbie EA, Gopinath KS, Howell LL. Effects of ketamine treatment on cocaine-induced reinstatement and disruption of functional connectivity in unanesthetized rhesus monkeys. Psychopharmacology (Berl). 2019;236:2105–2118. doi: 10.1007/s00213-019-05204-4.
  26. Federalnyye klinicheskiye rekomendatsii po diagnostike i lecheniyu sindroma zavisimosti. Opublikovano na sayte Rossiyskogo obshchestva psikhiatrov psychiatr.ru (iyun 2014). https://psychiatr.ru/news/281 (access date: 25.06.2022). (In Russ.)
  27. Li M, Woelfer M, Colic L et al. Default mode network connectivity change corresponds to ketamine’s delayed glutamatergic effects. Eur Arch Psychiatry Clin Neurosci. 2020;270(2): 207–216. doi: 10.1007/s00406-018-0942-y.
  28. O’Brien CP, Childress AR, McLellan AT, Ehrman R. A learning model of addiction. Res Publ Assoc Res Nerv Ment Dis. 1992;70:157–177.
  29. Baker TB, Piper ME, McCarthy DE et al. Addiction motivation reformulated: An affective processing model of negative reinforcement. Psychol Rev. 2004;111(1):33–51. doi: 10.1037/0033-295X.111.1.33.
  30. Spada MM, Caselli G, Nikčević AV, Wells A. Metacognition in addictive behaviors. Addict Behav. 2015;44:9–15. doi: 10.1016/j.addbeh.2014.08.002.
  31. Turel O, Bechara A. A triadic reflective-impulsive-interoceptive awareness model of general and impulsive information system use: Behavioral tests of neuro-cognitive theory. Front Psychol. 2016;7:601. doi: 10.3389/fpsyg.2016.00601.
  32. Hon T, Das RK, Kamboj SK. The effects of cognitive reappraisal following retrieval-procedures designed to destabilize alcohol memories in high-risk drinkers. Psychopharmacology (Berl). 2016;233: 851–861. doi: 10.1007/s00213-015-4164-y.
  33. Torregrossa MM, Corlett PR, Taylor JR. Aberrant learning and memory in addiction. Neurobiol Learn Mem. 2011;96:609–623. doi: 10.1016/j.nlm.2011.02.014.
  34. Taylor JR, Torregrossa MM. Pharmacological disruption of maladaptive memory. Handb Exp Pharmacol. 2015;228:381–415. doi: 10.1007/978-3-319-16522-6_13.
  35. Torregrossa MM, Taylor JR. Neuroscience of learning and memory for addiction medicine: From habit formation to memory reconsolidation. Prog Brain Res. 2016;223:91–113. doi: 10.1016/bs.pbr.2015.07.006.
  36. Bouton ME. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry. 2002;52(10):976–986. doi: 10.1016/s0006-3223(02)01546-9.
  37. Taujanskaite U, Cahill EN, Milton AL. Targeting drug memory reconsolidation: A neural analysis. Curr Opin Pharm. 2020;56:7–12. doi: 10.1016/j.coph.2020.08.007.
  38. Witteman J, Post H, Tarvainen M et al. Cue reactivity and its relation to craving and relapse in alcohol dependence: A combined laboratory and field study. Psychopharmacology (Berl). 2015;232(20):3685–3696. doi: 10.1007/s00213-015-4027-6.
  39. McGaugh JL. Time-dependent processes in memory storage. Science. 1966;153:1351–1358. doi: 10.1126/science.153.3742.1351.
  40. Lewis DJ. Psychobiology of active and inactive memory. Psychol Bull. 1979;86:1054–1083.
  41. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406:722–726. doi: 10.1038/35021052.
  42. Nader K, Hardt O. A single standard for memory: The case for reconsolidation. Nat Rev Neurosci. 2009;10(3):224–234. doi: 10.1038/nrn2590.
  43. Elsey JWB, Kindt M. Tackling maladaptive memories through reconsolidation: From neural to clinical science. Neurobiol Learn Mem. 2017;142(Pt A):108–117. doi: 10.1016/j.nlm.2017.03.007.
  44. Kindt M, van Emmerik A. New avenues for treating emotional memory disorders: Towards a reconsolidation intervention for posttraumatic stress disorder. Ther Adv Psychopharmacol. 2016;6(4):283–295. doi: 10.1177/2045125316644541.
  45. Przybyslawski J, Roullet P, Sara SJ. Attenuation of emotional and nonemotional memories after their reactivation: Role of beta adrenergic receptors. J Neurosci Off J Soc Neurosci. 1999;19:6623–6628. doi: 10.1523/JNEUROSCI.19-15-06623.
  46. Von der Goltz C, Vengeliene V, Bilbao A et al. Cue-induced alcohol-seeking behaviour is reduced by disrupting the reconsolidation of alcohol-related memories. Psychopharmacology. 2009;205:389–397. doi: 10.1007/s00213-009-1544-1.
  47. Lee JL, Nader K, Schiller D. An update on memory reconsolidation updating. Trends Cogn Sci. 2017;21(7):531–545. doi: 10.1016/j.tics.2017.04.006.
  48. Chen L, Yan H, Wang Y et al. The mechanisms and boundary conditions of drug memory reconsolidation. Front Neurosci. 2021;15:717956. doi: 10.3389/fnins.2021.717956.
  49. Exton-McGuinness MT, Milton AL. Reconsolidation blockade for the treatment of addiction: Challenges, new targets, and opportunities. Learn Mem. 2018;25(9):492–500. doi: 10.1101/lm.046771.117.
  50. Lee JL. Reconsolidation: maintaining memory relevance. Trends Neurosci. 2009;32(8):413–420. doi: 10.1016/j.tins.2009.05.002.
  51. Schwabe L, Karim Nader K, Pruessner J. Reconsolidation of human memory: Brain mechanisms and clinical relevance. Biol Psychiatry. 2014;76:274–280. doi: 10.1016/j.biopsych.2014.03.008.
  52. Das RK, Gale G, Walsh K et al. Ketamine can reduce harmful drinking by pharmacologically rewriting drinking memories. Nat Commun. 2019;10(1):5187. doi: 10.1038/s41467-019-13162-w.
  53. Barak S, Goltseker K. Targeting the reconsolidation of licit drug memories to prevent relapse: Focus on alcohol and nicotine. Int J Mol Sci. 2021;22(8):4090. doi: 10.3390/ijms22084090.
  54. Dunbar AB, Taylor JR. Reconsolidation and psychopathology: Moving towards reconsolidation-based treatments. Neurobiol Learn Mem. 2017;142:162–171. doi: 10.1016/j.nlm.2016.11.005.
  55. Milton AL. Drink, drugs and disruption: memory manipulation for the treatment of addiction. Curr Opin Neurobiol. 2013;23(4):706–712. doi: 10.1016/j.conb.2012.11.008.
  56. Phelps EA, Hofmann SG. Memory editing from science fiction to clinical practice. Nature. 2019;572:43–50. doi: 10.1038/s41586-019-1433-7.
  57. Olson DE. Psychoplastogens: A promising class of plasticity-promoting neurotherapeutics. J Exp Neurosci. 2018;12:1179069518800508. doi: 10.1177/1179069518800508.
  58. Bruel-Jungerman E, Davis S, Laroche S. Brain plasticity mechanisms and memory: A party of four. Neuroscientist. 2007;13(5):492–505. doi: 10.1177/1073858407302725.
  59. Peters J, Olson DE. Engineering safer psychedelics for treating addiction. Neurosci Insights. 2021;16:26331055211033847. doi: 10.1177/26331055211033847.
  60. Krupitskiy EM, Paley AI, Berkaliyev TN. Psikhodelicheskaya psikhoterapiya s primeneniyem ketamina. Konsultativnaya psikhologiya i psikhoterapiya. 1993;2(2):103–130.
  61. Azhari N, Hu H, O’Malley KY et al. Ketamine-facilitated behavioral treatment for cannabis use disorder: A proof of concept study. Am J Drug Alcohol Abuse. 2021;47(1):92–97. doi: 10.1080/00952990.2020.1808982.
  62. Dakwar E, Levin F, Hart CL et al. A single ketamine infusion combined with motivational enhancement therapy for alcohol use disorder: a randomized midazolam-controlled pilot trial. Am J Psychiatry. 2020;177(2):125–133. doi: 10.1176/appi.ajp.2019.19070684.
  63. Dakwar E, Nunes EV, Hart CL et al. A single ketamine infusion combined with mindfulness-based behavioral modification to treat cocaine dependence: A randomized controlled trial. Am J Psychiatry. 2019;176(11):923–930. doi: 10.1176/appi.ajp.2019.18101123.
  64. Xue YX, Luo YX, Wu P et al. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science. 2012;336:241–245. doi: 10.1126/science.1215070.
  65. Ramirez-Castillo D, Garcia-Roda C, Guell F et al. Frustration tolerance and personality traits in patients with substance use disorders. Front Psychiatry. 2019;10:421. doi: 10.3389/fpsyt.2019.00421.
  66. Kraguljac NV, Frölich MA, Tran S et al. Ketamine modulates hippocampal neurochemistry and functional connectivity: A combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Mol Psychiatry. 2017;22:562–569. doi: 10.1038/mp.2016.122.
  67. Lehmann M, Seifritz E, Henning A et al. Differential effects of rumination and distraction on ketamine induced modulation of resting state functional connectivity and reactivity of regions within the default-mode network. Soc Cogn Affect Neurosci. 2016;11:1227–1235. doi: 10.1093/scan/nsw034.
  68. Cogan ES, Shapses MA, Robinson TE, Tronson NC. Disrupting reconsolidation: memory erasure or blunting of emotional/motivational value? Neuropsychopharmacology. 2019;44(2):399–407. doi: 10.1038/s41386-018-0082-0.
  69. Jobes ML, Aharonovich E, Epstein DH et al. Effects of prereactivation propranolol on cocaine craving elicited by imagery script/cue sets in opioid-dependent polydrug users: A randomized study. J Addict Med. 2015;9(6):491–498. doi: 10.1097/ADM.0000000000000169.
  70. Treanor M, Brown LA, Rissman J, Craske MG. Can memories of traumatic experiences or addiction be erased or modified? A critical review of research on the disruption of memory reconsolidation and its applications. Perspect Psychol Sci. 2017;12:290–305. doi: 10.1177/1745691616664725.
  71. Copersino ML. Cognitive mechanisms and therapeutic targets of addiction. Curr Opin Behav Sci. 2017;13:91–98. doi: 10.1016/j.cobeha.2016.11.005.
  72. Short B, Fong J, Galvez V et al. Side-effects associated with ketamine use in depression: A systematic review. Lancet Psychiatry. 2018;5:65–78. doi: 10.1016/S2215-0366(17)30272-9.

Copyright (c) 2022 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies