大鼠小肠和结肠壁内自主神经节在出生后个体发育中的形态计量学特征
- 作者: Masliukov P.M.1, Budnik A.F.2
-
隶属关系:
- Yaroslavl State Medical University
- Kabardino-Balkarian State University
- 期: 卷 163, 编号 4 (2025)
- 页面: 305-315
- 栏目: Original Study Articles
- URL: https://journals.rcsi.science/1026-3543/article/view/349035
- DOI: https://doi.org/10.17816/morph.677905
- EDN: https://elibrary.ru/GICHGI
- ID: 349035
如何引用文章
详细
论证。成年动物肠壁内自主神经节的形态学,尤其是肌间(myenteric plexus, MP)和黏膜下(submucosal plexus, SP)神经丛,已有较深入研究,但关于这些结构的年龄相关特征在现有文献中仍缺乏充分资料。
目的。 研究大鼠小肠和结肠壁内肌间神经丛和黏膜下神经丛自主神经节在出生后个体发育中的形态计量学特征。
方法。选用不同年龄阶段的Wistar系雄性大鼠:新生鼠,以及出生后第10、20、30、60天,及12月龄和24月龄。采用免疫组织化学方法,使用带荧光标记的抗蛋白基因产物9.5(PGP9.5)抗体进行分析。
结果。在出生后发育过程中,小肠和结肠内每1 mm2的神经节数量逐渐减少,而神经节面积逐渐增大。小肠和结肠MP神经节的平均面积自出生起增加至第60天;SP神经节的平均面积则在出生后前30天内增加。MP每mm2的神经节密度在小肠于前60天下降,在结肠于前12月内下降。SP的密度在小肠和结肠均于出生后前60天内下降。在MP,每个神经节的PGP9.5免疫反应性神经元平均数在整个发育过程中保持稳定,而在SP,该平均数在出生后前10天增加。
结论。在大鼠出生后个体发育的前30天内,MP和SP的神经节体积增大,而在小肠和结肠单位面积上的密度降低。MP的神经节形态及单个神经节内的神经元数量在发育过程中保持不变。与大鼠小肠和结肠的MP不同,出生时SP的神经节仍不成熟,其神经节网络的形成发生在出生后前10天。
作者简介
Petr M. Masliukov
Yaroslavl State Medical University
编辑信件的主要联系方式.
Email: mpm@ysmu.ru
ORCID iD: 0000-0002-6230-5024
SPIN 代码: 7676-0849
Dr. Sci. (Medicine), Professor
俄罗斯联邦, YaroslavlAntonina F. Budnik
Kabardino-Balkarian State University
Email: budnik74@mail.ru
ORCID iD: 0000-0002-3333-5865
SPIN 代码: 3691-4817
Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, Nalchik参考
- Nozdrachev AD. A brief history of Russian research on the autonomic nervous system. Anat Rec (Hoboken). 2023;306(9):2230–2248. doi: 10.1002/ar.24944 EDN: JOOKZP
- Furness JB. Comparative and evolutionary aspects of the digestive system and its enteric nervous system control. Adv Exp Med Biol. 2022;1383:165–177. doi: 10.1007/978-3-031-05843-1_16
- Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci. 2020;77(22):4505–4522. doi: 10.1007/s00018-020-03543-6 EDN: FJKRTL
- Furness JB, Stebbing MJ. The first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol Motil. 2018;30(2). doi: 10.1111/nmo.13234 EDN: YDLCEX
- Eisenberg JD, Bradley RP, Graham KD, et al. Three-dimensional imaging of the enteric nervous system in human pediatric colon reveals new features of Hirschsprung’s disease. Gastroenterology. 2024;167(3):547–559. doi: 10.1053/j.gastro.2024.02.045 EDN: MGRGXW
- Fujiwara N, Miyahara K, Lee D, et al. A novel mouse model of intestinal neuronal dysplasia: Visualization of the enteric nervous system. Pediatr Surg Int. 2023;39(1):298. doi: 10.1007/s00383-023-05585-w EDN: KTKTQC
- Tikhonov EA, Makarova OV, Golichenkov VA. Age-dependent changes of myenteric nervous plexus histoarchitectonics in proximal and distal colon of Wistar rats. Journal of Anatomy and Histopathology. 2017;6(3):75–81. doi: 10.18499/2225-7357-2017-6-3-75-81 EDN: ZPDAQZ
- Chumasov EI, Maistrenko NA, Romashchenko PN, et al. Immunohistochemical study of the sympathetic innervation of the colon in chronic slow-transit constipation. Experimental and Clinical Gastroenterology. 2022;11(207):191–197. doi: 10.31146/1682-8658-ecg-207-11-191-197 EDN: PXTDXG
- Chumasov EI, Petrova ES, Korzhevskii DE. Study of the rat duodenal innervation using neural immunohistochemical markers. I.M. Sechenov Russian Journal of Physiology. 2020;106(7):853–865. doi: 10.31857/S086981392007002X EDN: XGGZHF
- Masliukov PM. Sympathetic neurons of the cat stellate ganglion in postnatal ontogenesis: morphometric analysis. Auton Neurosci. 2001;89(1-2):48–53. doi: 10.1016/S1566-0702(01)00246-6 EDN: LGSPQN
- Nagy N, Goldstein AM. Enteric nervous system development: A crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106. doi: 10.1016/j.semcdb.2017.01.006
- Masliukov PM, Budnik AF, Nozdrachev AD. Neurochemical features of metasympathetic system ganglia in the course of ontogenesis. Advances in Gerontology. 2017;30(3):347–355. (In Russ.)
- Rao M, Gershon MD. Enteric nervous system development: what could possibly go wrong? Nat Rev Neurosci. 2018;19(9):552–565. doi: 10.1038/s41583-018-0041-0
- Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 2005;319(3):367–382. doi: 10.1007/s00441-004-1023-2 EDN: QSBYRU
- Budnik AF, Aryaeva D, Vyshnyakova P, Masliukov PM. Age related changes of neuropeptide Y-ergic system in the rat duodenum. Neuropeptides. 2020;80:101982. doi: 10.1016/j.npep.2019.101982 EDN: HLIGYM
- Festing MF, Overend P, Gaines Das R, et al. The design of animal experiments: reducing the use of animals in research through better experimental design (Laboratory Animal Handbooks). London: Royal Society of Medicine Press Limited; 2002.
- Avtandilov GG. Medical morphometry. A Practical Guide. Moscow: Meditsina; 1990. (In Russ.)
- Schäfer KH, Hänsgen A, Mestres P. Morphological changes of the myenteric plexus during early postnatal development of the rat. Anat Rec. 1999;256(1):20–28. doi: 10.1002/(SICI)1097-0185(19990901)256:1<20::AID-AR4>3.0.CO;2-8
- Saffrey MJ. Cellular changes in the enteric nervous system during ageing. Dev Biol. 2013;382(1):344–355. doi: 10.1016/j.ydbio.2013.03.015
- Peck CJ, Samsuria SD, Harrington AM, et al. Fall in density, but not number of myenteric neurons and circular muscle nerve fibres in guinea-pig colon with ageing. Neurogastroenterol Motil. 2009;21(10):1075-e90. doi: 10.1111/j.1365-2982.2009.01349.x
- Phillips RJ, Kieffer EJ, Powley TL. Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons. Auton Neurosci. 2003;106(2):69–83. doi: 10.1016/S1566-0702(03)00072-9
- Budnik AF, Masliukov PM. Postnatal development of the enteric neurons expressing neuronal nitric oxide synthase. Anat Rec (Hoboken). 2023;306(9):2276–2291. doi: 10.1002/ar.24947 EDN: FDQLJQ
补充文件







