A Dynamicly Consistent Model of Normal Reactions at Points of a Mobile Platform Contact with a Surface Taking Account of the Design of Mecanum Wheels and Multicomponent Friction

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article investigates the influence of the dependence of normal reactions on motion parameters on the dynamics of a mobile platform by taking into account the design of mecanum wheels and multicomponent friction. To describe the dependence of normal reactions on motion parameters, the theorems on the change in momentum and angular momentum written for the mecanum platform are used. The influence of normal reactions on the dynamics of the mecanum platform is estimated from the results of numerical simulation. The mecanum platform dynamics model takes into account the design of the mecanum wheels and multicomponent friction. The multicomponent friction model proposed by V.F. Zhuravlev that takes into account sliding and spinning is considered. Estimates of the maximum deviations of the normal reactions of the supports, due to the dynamics of the mecanum platform, from the values of the normal reactions calculated for the mobile platform at rest (equal to 16.7% for KUKA youBot robot) are given. Inequalities that limit the maximum values of the control moments, under which the contacting rollers of the mecanum wheels do not come off from the supporting surface are obtained. Based on the simulation results, it is shown that the normal responses are changed by 5–6% of the normal response value calculated in the case of the mecanum platform at rest, which corresponds to the obtained estimates. These changes in normal reactions can lead to a decrease in the accuracy of the movement of the mecanum platform obtained with program control.

Sobre autores

G. Saipulaev

National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia

Email: saypulaevgr@mail.ru
Россия, Москва

B. Adamov

National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia

Email: adamoff.b@yandex.ru
Россия, Москва

A. Kobrin

National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia

Autor responsável pela correspondência
Email: kobrinai@yandex.ru
Россия, Москва

Bibliografia

  1. Мартыненко Ю.Г., Формальский А.М. О движении мобильного робота с роликонесущими колесами // Изв. РАН. Теория и системы управления. 2007. № 6. С. 142–149.
  2. Borisov A.V., Kilin A.A., Mamaev I.S. An omni-wheel vehicle on a plane and a sphere // Rus. J. Nonlin. Dyn. 2011. V. 7. № 4. P. 785–801. https://doi.org/10.20537/nd1104004
  3. Adamov B.I. A Study of the Controlled Motion of a Four-wheeled Mecanum Platform // Rus. J. Nonlin. Dyn. 2018. V. 14. № 2. P. 265–290. https://doi.org/10.20537/nd180209
  4. Gfrerrer A. Geometry and kinematics of the Mecanum wheel // Computer Aided Geometric Design. 2008. V. 25. № 9. P. 784–791. https://doi.org/10.1016/j.cagd.2008.07.008
  5. Adamov B.I., Saypulaev G.R. Research on the Dynamics of an Omnidirectional Platform Taking into Account Real Design of Mecanum Wheels (as Exemplified by KUKA youBot) // Rus. J. Nonlin. Dyn. 2020. V. 16. № 2. P. 291–307. https://doi.org/10.20537/nd200205.
  6. Adamov B.I., Saypulaev G.R. A Study of the Dynamics of an Omnidirectional Platform, Taking into Account the Design of Mecanum Wheels and Multicomponent Contact Friction // 2020 International Conference Nonlinearity, Information and Robotics (NIR). IEEE. 2020. https://doi.org/10.1109/nir50484.2020.9290193.
  7. Adamov B.I., Saypulaev G.R. Influence of Dissipative Forces and the Design of Mecanum-Wheels on the Omnidirectional Platform Dynamics // 2021 International Conference “Nonlinearity, Information and Robotics” (NIR). IEEE. 2021. https://doi.org/10.1109/nir52917.2021.9666053.
  8. Zhuravlev V.Ph., Klimov D.M. Global motion of the celt // Mech. Solids. 2008. V. 43. № 3. P. 320–327. https://doi.org/10.3103/s0025654408030023
  9. Kireenkov A.A., Semendyaev S.V., Filatov V.F. Experimental study of coupled twodimensional models of sliding and spinning friction // Mech. Solids. 2010. V. 45. № 6. P. 921–930. https://doi.org/10.3103/s0025654410060142
  10. Bayar G., Ozturk S. Investigation of The Effects of Contact Forces Acting on Rollers of a Mecanum Wheeled Robot // Mechatronics. 2020. V. 72. P. 102467. https://doi.org/10.1016/j.mechatronics.2020.102467
  11. Giurgiu T., Puica C., Pupaza C. et al. Mecanum wheel modeling for studying roller-ground contact issues // U.P.B. Sci. Bull. 2017. V. 79. № 2. P. 147–158.
  12. Zobova A.A. A review of models of distributed dry friction // J. Appl. Math. Mech. 2016. V. 80. № 2. P. 141–148. https://doi.org/10.1016/j.jappmathmech.2016.06.008
  13. Иванов А.П. Об общих принципах механики в системах с трением // Сборник научно-методических статей. Т. 27. М.: МГУ, 2009. С. 69–83.
  14. Иванов А.П. Основы теории систем с трением. М., Ижевск: НИЦ “РХД”, ИКИ. 2011. 304 с.
  15. Розенблат Г.М. Динамические системы с сухим трением. М., Ижевск: НИЦ “РХД”. 2006. 204 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (161KB)
3.

Baixar (235KB)
4.

Baixar (263KB)
5.

Baixar (123KB)
6.

Baixar (129KB)

Declaração de direitos autorais © Г.Р. Сайпулаев, Б.И. Адамов, А.И. Кобрин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies