Subsea Gas Pipeline Floatation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The linear and non-linear bending of the span of a subsea pipeline between two supports has been studied. The weight of the pipeline with the transported medium, the buoyancy force of water, the transverse distributed forces due to pressures on the inner and outer surfaces, the change in the curvature of the axial line during bending, as well as the decrease in the average pressure on the pipe walls during its rise are taken into account. The supports allow movement in the axial direction in proportion to the resulting force. The static bend of the pipeline is considered up to a position coinciding with the surface of the water. A parametric analysis of the bend is given, in particular, depending on the gas pressure and the depth of the reservoir. The conditions for the surfacing of the pipeline are determined.

Sobre autores

M. Ilgamov

Mechanical Engineering Research Institute of the RAS; Bashkir State University; Mavlyutov Institute of Mechanics UFRC RAS

Autor responsável pela correspondência
Email: ilgamov@anrb.ru
Moscow, 101990 Russia; Ufa, 450076 Russia; Ufa, 450054 Russia

Bibliografia

  1. Левин С.М. Подводные трубопроводы. М.: Недра, 1970. 280 с.
  2. Астафьев В.Н. Проектирование подводных трубопроводов в условиях арктических морей. Уфа: УГНТУ, 2000. 76 с.
  3. Palmer A.C., King R.A. Subsea pipeline engineering. Oklahoma: PWC, 2004. 570 p.
  4. Айнбиндер А.Б. Расчет магистральных и промысловых трубопроводов на прочность и устойчивость: Справочное пособие. М.: Недра, 1991. 287 с.
  5. Мансуров М.Н., Черний В.П. Методы расчета морских трубопроводов на прочность и устойчивость // Газовая промышленность. 2005. № 4. С. 47–51.
  6. Peek R., Yun H. Flotation to trigger lateral buckles in pipelines on a flat seabed // J. Eng. Mech. 2007. V. 4. P. 442–451. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(442)
  7. Коробков Г.Е., Зарипов Р.М., Шаммазов И.А. Численное моделирование напряженно-деформированного состояния и устойчивости трубопроводов в осложненных условиях эксплуатации. СПб.: Недра, 2009. 410 с.
  8. Лаптева Т.И., Мансуров М.Н. Сравнительный анализ устойчивости морских и сухопутных трубопроводов // Газовая промышленность. 2009. № 4. С. 37–40.
  9. Hong Z., Liu R., Liu W., Yan S. Study on lateral buckling characteristics of a submarine pipeline with a single arch symmetric initial imperfection // Ocean Eng. 2015. V. 108. P. 21–32. https://doi.org/10.1016/j.oceaneng.2015.07.049
  10. Chee J., Walker A., White D. Controlling lateral buckling of subsea pipeline with sinusoidal shape pre-deformation // Ocean Eng. 2018. V. 151. P. 170–190. https://doi.org/10.1016/j.oceaneng.2018.01.024
  11. Wang Z., Tang Y. Study on symmetric buckling mode triggered by dual distributed buoyancy sections for subsea pipelines // Ocean Eng. 2020. V. 216. P. 105–110. https://doi.org/10.1016/j.oceaneng.2020.108019
  12. Chen Y., Dong S., Zang Z. Buckling analysis of subsea pipeline with idealized corrosion defects using homotopy analysis method // Ocean Eng. 2021. V. 234. P. 25–35. https://doi.org/10.1016/j.oceaneng.2021.108865
  13. Wang Z., Tang Y., Guedes S.C. Imperfection study on lateral thermal buckling of subsea pipeline triggered by a distributed buoyancy section // Marine Struct. 2021. V. 76. P. 10–29. https://doi.org/10.1016/j.marstruc.2020.10291
  14. Bi K., Hao H. Using pipe-in-pipe systems for subsea pipeline vibration control // Eng. Struct. 2016. V. 109. P. 75–84. https://doi.org/10.1016/j.engstruct.2015.11.018
  15. Li S., Karney B.W., Liu G. arch in pipeline systems – A review of the literature // J. Fluids Struct. 2015. V. 57. P. 277–297. https://doi.org/10.1016/j.fluidstructs.2015.06.020
  16. Ilgamov M.A. Static Problems of Hydroelasticity. M.: Fizmatlit, 1998. 208 p.
  17. Ильгамов М.А. Модель всплытия подводного трубопровода // ДАН. Физика, технические науки. 2022. Т. 504. С. 12–16. https://doi.org/10.31857/S2686740022030087
  18. Ilgamov M.A., Ratrout R.A. Large deflection of superconducting cable // Int. J. Nonlin. Mech. 1999. V. 34. № 5. P. 869–880. https://doi.org/10.1016/S0020-7462(98)00059-6
  19. Овсянников Л.В. О всплытии пузыря // Некоторые проблемы математики и механики. К 70‑летию М.А. Лаврентьева. Л.: Наука, 1970. С. 209–222.
  20. Вольмир А.С. Устойчивость деформируемых систем. М.: Наука,1967. 984 с.
  21. Ахтямов А.М. Теория идентификации краевых условий и ее приложения. М.: Физматлит, 2009. 272 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (93KB)
3.

Baixar (92KB)
4.

Baixar (47KB)
5.

Baixar (40KB)

Declaração de direitos autorais © М.А. Ильгамов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies