A new method for determining the buckling resistance in the nonlinear range of strains for a column supported by rotational stiffeners

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An innovational method for solving the Euler–Bernoulli problem of an overall buckling of the uniform column supported by rotational springs of stiffnesses γ1, γ2, N ∙ m free from traditional simplifications (invariable flexural stiffness and length) is given. It is based on a natural and comprehensive constraint on the restored axis length. A system of algebraic equations relating the critical stress σcr to the nonlinear compression diagram ε(σ) of the material, the slenderness of the column λ and the values γ1, γ2 has been obtained, solved and verified in important special cases. It is shown that columns of the same material with the same so-called the reduced spring stiffnesses have identical dependencies σcr(λ). It is shown that columns with λ ≤ λmin12) cannot be buckled by any axial load F for various types of ε(σ) (Ramberg–Osgood, rational fraction, polynomial, etc.).

Full Text

Restricted Access

About the authors

V. V. Chistyakov

Physical and Technical Institute of RAS named after A.F.Ioffe

Author for correspondence.
Email: v.chistyakov@mail.ioffe.ru
Russian Federation, Saint-Peterbourg

S. M. Soloviev

Physical and Technical Institute of RAS named after A.F.Ioffe

Email: serge.soloviev@mail.ioffe.ru
Russian Federation, Saint-Peterbourg

References

  1. Hu Ku., David C. Lai. Effective length factor for restrained beam-column // J. Struct. Eng. 1986. V. 112. № 2. P. 241–256. https://doi.org/10.1061/%28ASCE%290733-9445%281986%29112%3A2%28241%29
  2. Huang Z.-F., Tan K.-H. Rankine approach for fire resistance of axially-and-flexurally restrained steel columns // J. Constr. Steel Res. 2003. V. 59. № 12. P. 1553–1571. https://doi.org/10.1016/s0143-974x(03)00103-2
  3. Cai Jian Guo, Xu Yi Xiang, Feng Jian, Zhang Jin. Buckling and post-buckling of rotationally restrained columns with imperfections // Scie. China. Phys., Mech. & Astron. 2012. V. 55. P. 1519–1522. https://doi.org/10.1007/s11433-012-4811-9
  4. Yaylı M. Ö., Yerel Kandemir S. Buckling analysis of a column with rotational springs at both ends in aircraft column // Sustainable Aviation, Springer International Publishing, Switzerland. 2016. P. 159–165. https://doi.org/10.1007/978-3-319-34181-1_14
  5. Cao K., Guo Y.-J., Xu J. Buckling analysis of columns ended by rotation-stiffness spring hinges // Int. J. of Steel Struct. 2016. V. 16. P. 1–9. https://doi.org/10.1007/s13296-016-3001-4
  6. Chistyakov V. V., Soloviev S. M. Buckling in inelastic regime of a uniform console with symmetrical cross section: computer modeling using Maple 18 // Discr. & Contin. Mod. & Appl. Comp. Sci. 2023. V. 31. № 2. P. 174–188. https://doi.org/10.22363/2658-4670-2023-31-2-174-188
  7. Chistyakov V. V. Analytical and numerical modelling of a buckling in a plastic regime of a homogeneous console with symmetrical cross section/ Technical Physics ” 2023, iss. 12, p. 1588–1591, https://doi.org/10.61011/TP.2023.12.57715.f207-23
  8. Ramberg, W., Osgood, W. R. Description of stress–strain curves by three parameters // Technical Note. 1943. № 902.
  9. Anakhaev K.N. On the Calculation of Nonlinear Buckling of a Bar / Mechanics of Solids, 2021. v. 56, № 5. p. 684–689. https://doi.org/10.3103/S002565442105006X
  10. Wang Y.Q., Yuan H.X., Chang T, Du X.X., Yu M. Compressive buckling strength of extruded aluminum alloy I-section columns with fixed-pinned end conditions // Thin-Walled Struct. 2017. V. 119. P. 396–403. https://doi.org/10.1016/j.tws.2017.06.034
  11. Zhou Sh.R., Shi L.L., Xiong G., Kang Sh.B., Qin Y.L., Yan H.Q. Global buckling behavior of bamboo scrimber box columns under axial compression: Experimental tests and numerical modelling // J. Build. Eng. Part A. 2023. P. 10543. https://doi.org/10.1016/j.jobe.2022.105435
  12. Chen Jiao, Zhipeng Chen, Qiuwei Zhang et al. Compressive strength and impact resistance of Al2O3/Al composite structures fabricated by digital light processing // Ceram. Int. 2022. V. 48. № 24. P. 36091–36100. https://doi.org/10.1016/j.ceramint.2022.08.150

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a) Loading diagram of a curved column; b) bending profile in the ratio scale: vertical black dash-dotted line – boundaries of convexity regions I, II and III y(z), red dots – slope of pf 1 axis at point A, red dotted line – slope q1 at inflection point (IP) 1, blue dots – slope of pf 2 axis at point B, blue dotted line – slope q2 at IP 2, green long dotted line – line of inflection points, horizontal black dotted line – tangent at the point of maximum deviation y.

Download (140KB)
3. Fig. 2. a) Dependence σcr(λ), Pa (6.1) for an I-beam S = 51.3 cm2, ix = 3.6 cm, Al 6061 T6 alloy [10] for the same spring stiffnesses in the range γ = 0–50 MN m; b) 3D graph σcr(λ,γ) for bamboo columns 100×100×20 [11], green – physical sheet, red – non-physical.

Download (347KB)
4. Fig. 3. a) Compression diagram of the Al + 15% Al2O3 composite: circles are experimental points [12], black dotted line is σ(ε), Pa, fourth-order polynomial, gray solid line is Hooke's law, red is the ε(σ) dependence of the fifth-order polynomial, green (right) is the tangent modulus of elasticity Et, Pa; b) minimum flexibility as a function of the stiffness of identical springs γ, N ∙ m for a 20K1 I-beam made of the composite.

Download (256KB)
5. Fig. 4. a) Dependences σ(λ), Pa (7.4) for column support on an ideal hinge and rigid fixing for linear (gray) and polynomial n = 5 (black) compression diagrams, I-beam 20K1, Al + 15% Al2O3; b) dependence of σ, Pa, on λ, γ1, N ∙ m (8.3) for the same profile.

Download (270KB)
6. Fig. 5. a) Curves σ(γ1 = γ2, N ∙ m), Pa and σ(γ1,γ2 = 0), Pa for I-beam 20K1 made of composite Al + 15 wt.% Al2O3 at λ = 50 (~2.5 m); b) projection of surface “ridge” σ, Pa, from γ1,γ2, N ∙ m with values ​​χ i according to (9.1) onto coordinate plane (Oσγ1) (border of blue with upper blue-gray) and line of its intersection with (Oσγ1) (border of blue with lower gray).

Download (208KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».