Optimal reorientation of a rigid body (spacecrafts) with limited control based on a combined quality functional
- Authors: Levskii M.V.1
-
Affiliations:
- Scientific Research Institute of Space Systems named after A.A. Maksimov – a branch of the State Scientific and Production Center named after M.V. Khrunichev
- Issue: No 4 (2025)
- Pages: 128-155
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/308567
- DOI: https://doi.org/10.31857/S1026351925040074
- EDN: https://elibrary.ru/bnogfn
- ID: 308567
Cite item
Abstract
A quaternion solution to the problem of optimal rotation of a rigid body (spacecraft) from an arbitrary initial to a designated angular position in the presence of constraints on the control variables is presented. To optimize the control process, a combined quality functional was used, which combines in a given proportion the sum of time and control efforts spent on the turn, and the integral of the kinetic energy of rotation during the turn. Based on the maximum principle of L.S. Pontryagin and quaternion models of controlled motion of a rigid body, a solution to the problem was obtained. The properties of optimal motion are disclosed in analytical form. Formalized equations and calculation formulas are written down to construct an optimal rotation program. Analytical equations and relationships for finding optimal control are given. Key relationships are given that determine the optimal values of the parameters of the rotation control algorithm. A constructive scheme for solving the boundary value problem of the maximum principle for arbitrary conditions of rotation (initial and final positions and moments of inertia of a rigid body) is also given. In the case of a dynamically symmetric rigid body, a solution to the reorientation problem in closed form is obtained. A numerical example and the results of mathematical modeling are presented, confirming the practical feasibility of the developed method for controlling the attitude of a spacecraft.
About the authors
M. V. Levskii
Scientific Research Institute of Space Systems named after A.A. Maksimov – a branch of the State Scientific and Production Center named after M.V. Khrunichev
Author for correspondence.
Email: levskii1966@mail.ru
Korolev, Russia
References
- Sinitsin L.I., Kramlikh A.V. Synthesis of the optimal control law for the reorientation of a nanosatellite using the procedure of analytical construction of optimal regulators // J. Phys. Conf. Ser. V. 1745. 2021. P. 012053. https://doi.org/10.1088/1742-6596/1745/1/012053
- Velishchansky M.A., Krishchenko A.P., Tkachev S.B. Synthesis of spacecraft reorientation algorithms based on the concept of the inverse problem of dynamics // Izvestiya RAS. TiSU. 2003. № 5. P. 156–163 [in Russian].
- Junkins J.L., Turner J.D. Optimal Spacecraft Rotational Maneuvers. Elsevier. USA, 1986. 515 p.
- Reshmin S.A. Threshold absolute value of relay control for the fastest possible bringing of a satellite to the desired angular position // Izvestiya RAS. TiSU. 2018. № 5. P. 30–41 [in Russian]. https://doi.org/10.31857/S000233880002843-6
- Scrivener S., Thompson R. Survey of Time-optimal Attitude Maneuvers // J. Guidance, Control and Dynamics. 1994. V. 17. № 2. P. 225–233. https://doi.org/10.2514/3.21187
- Zhou H., Wang D., Wu B., EK Poh. Time-optimal reorientation for rigid satellite with reaction wheels // Int. J. Control. 2012. V. 85. № 10. P. 1–12. https://doi.org/10.1080/00207179.2012.688873
- Reshmin S.A. Threshold absolute value of relay control for the fastest possible bringing of a satellite to a gravitationally stable position // Reports of the Academy of Sciences. 2018. V. 480. № 6. P. 671–675 [in Russian]. https://doi.org/10.7868/S0869565218180081
- Levskii M.V. Application of L.S. Pontryagin’s maximum principle to problems of optimal control of spacecraft orientation // Izvestiya RAS. TiSU. 2008. № 6. P. 144–157 [in Russian].
- Shen H., Tsiotras P. Time-optimal control of axi-symmetric rigid spacecraft with two controls // AIAA J. Guidance, Control and Dynamics. 1999. V. 22. № 5. P. 682–694. https://doi.org/10.2514/2.4436
- Molodenkov A.V., Sapunkov Ya.G. Analytical solution to the problem of time-optimal turn of an axisymmetric spacecraft in the class of conical motions // Izv. RAS. TiSU. 2018. № 2. P. 131–147 [in Russian]. https://doi.org/10.7868/S0002338818020117
- Branets V.N., Chertok M.B., Kaznacheev Yu.V. Optimal rotation of a rigid body with one axis of symmetry // Cosmic research. 1984. V. 22. Issue 3. P. 352–360 [in Russian].
- Branets V.N., Shmyglevsky I.P. Application of quaternions in problems of rigid body orientation. Moscow: Nauka, 1973. 320 p. [in Russian].
- Aipanov Sh.A., Zhakypov A.T. Method of separation of variables and its application to the problem of optimal turn of a spacecraft // Cosmic research. 2020. V. 58. № 1. P. 73–84 [in Russian]. https://doi.org/10.31857/S002342062001001X
- Strelkova N.A. On the optimal reorientation of a rigid body // Problems of mechanics of controlled motion. Nonlinear dynamic systems. Perm. PSU. 1990. P. 115–133 [in Russian].
- Levskii M.V. Kinematically optimal control of spacecraft reorientation // Izvestiya RAS. TiSU. 2015. № 1. P. 119–136 [in Russian]. https://doi.org/10.7868/S0002338814050114
- Zelepukina O.V., Chelnokov Yu.N. Construction of optimal laws of change of the vector of kinetic moment of a dynamically symmetric rigid body // Izv. RAS. MTT. 2011. № 4. P. 31–49 [in Russian].
- Biryukov V.G., Chelnokov Yu.N. Construction of optimal laws of change of the vector of kinetic moment of a rigid body // Izv. RAS. MTT. 2014. № 5. P. 3–21 [in Russian].
- Levskii M.V. Synthesis of optimal control of terminal orientation of a spacecraft using the quaternion method // Izv. RAS. MTT. 2009. № 2. P. 7–24 [in Russian].
- Levskii M.V. About method for solving the optimal control problems of spacecraft spatial orientation // Problems of Nonlinear Analysis in Engineering Systems. 2015. V. 21. № 2. P. 61–75.
- Molodenkov A.V., Sapunkov Ya.G. Analytical solution of the problem of optimal turn of an axisymmetric spacecraft in the class of conical motions // Izv. RAS. TiSU. 2016. № 6. P. 129–145 [in Russian]. https://doi.org/10.7868/S0002338816060093
- Molodenkov A.V., Sapunkov Ya.G. Analytical quasi-optimal solution to the problem of rotation of an axisymmetric rigid body with a combined functional // Izv. RAS. TiSU. 2020. № 3. P. 39–49 [in Russian]. https://doi.org/10.31857/S0002338820030105
- Sapunkov Ya.G., Molodenkov A.V. Analytical solution to the problem of optimal, in the sense of the combined functional, rotation of an axisymmetric spacecraft // Automation and Telemechanics. 2021. № 7. P. 86–106 [in Russian]. https://doi.org/10.31857/S0005231021070059
- Molodenkov A.V., Sapunkov Ya.G. Analytical approximate solution of the problem of optimal turn of a spacecraft under arbitrary boundary conditions // Izvestiya RAS. TiSU. 2015. № 3. P. 131–141 [in Russian]. https://doi.org/10.7868/S0002338815030142
- Levskii M.V. Synthesis of optimal control of spacecraft orientation using a combined quality criterion // Izvestiya RAS. TiSU. 2019. № 6. P. 139–162 [in Russian]. https://doi.org/10.1134/S0002338819040103
- Levskii M.V. Control of rigid body (spacecraft) turn with a combined optimality criterion based on quaternions // Izv. RAS. MTT. 2023. № 5. P. 58–78 [in Russian]. https://doi.org/10.31857/S0572329922600566
- Levskii M.V. Quaternion solution of the problem of optimal control of the orientation of a rigid body (spacecraft) with a combined quality criterion // Izv. RAS. MTT. 2024. № 1. P. 197–222 [in Russian]. https://doi.org/10.31857/S1026351924010115
- Levskii M.V. Analytical solution of the problem of optimal in the sense of a combined quality criterion for control of the reorientation of a rigid body (spacecraft) based on quaternions // Izv. RAS. MTT. 2025. № 1. P. 49–74 [in Russian]. https://doi.org/10.31857/S1026351925010035
- Quang M. Lam. Robust and adaptive reconfigurable control for satellite attitude control subject to under-actuated control condition of reaction wheel assembly // Mathematics in Engineering, Science and Aerospace. 2018. V. 9. № 1. P. 47–63.
- Levskii M.V. Special aspects in attitude control of a spacecraft, equipped with inertial actuators // J. Computer Science Applications and Information Technology. 2017. V. 2. № 4. P. 1–9. https://doi.org/10.15226/2474-9257/2/4/00121
- Gorshkov O.A., Muravyov V.A., Shagaida A.A. Hall and ion plasma engines for spacecraft. Moscow: Mashinostroenie, 2008. 280 p. [in Russian].
- Pontryagin L.S., Boltyansky V.G., Gamkrelidze R.V., Mishchenko E.F. Mathematical theory of optimal processes. Moscow: Nauka, 1983. 392 p. [in Russian].
- Young L. Lectures on the Calculus of Variations and Optimal Control Theory. Moscow: Mir, 1974. 488 p. [in Russian].
- Lyubushin A.A. On the application of modifications of the method of successive approximations for solving optimal control problems // ZhVMMF. 1982. V. 22. № 1. P. 30–35 [in Russian].
- Levskii M.V. Control system for spatial rotation of a spacecraft. Patent for invention of the Russian Federation No. 2006431 // Bulletin “Inventions. Applications and Patents”. 1994. № 2. Published 20.01.1994. P. 49–50 [in Russian].
- Levskii M.V. Method for controlling the turn of a spacecraft and a system for its implementation. Patent for invention of the Russian Federation № 2114771 // Bulletin “Inventions. Applications and Patents”. 1998. № 19. Published 10.07.1998. P. 234–236 [in Russian].
- Smolnikov B.A. Generalization of the Euler case of rigid body motion // PMM. 1967. V. 31. Issue 2. P. 735–736 [in Russian].
- Zhuravlev V.F., Klimov D.M. Applied methods in the theory of oscillations. M.: Nauka, 1988. 328 p. [in Russian].
- Levskii M.V. Device for forming parameters of regular precession of a solid body. Patent for invention of the Russian Federation № 2146638 // Bulletin “Inventions. Applications and Patents”. 2000. № 8. Published 20.03.2000. P. 148 [in Russian].
- Kulkov V.M., Obukhov V.A., Egorov Yu.G., Belik A.A., Kraynov A.M. Comparative assessment of the efficiency of using promising types of electric rocket engines as part of small spacecraft // Vestn. Samara State Aerospace University. 2012. V. 3. № 34. P. 187–195 [in Russian].
Supplementary files
