A review of studies on improving the plastic properties of additive materials under strong pulsed current

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An overview of research methods for improving the physico-mechanical properties of conductive materials grown using additive manufacturing techniques is presented. The review is conducted in order to develop a method for improving the properties of additive steel AISI 316L made by selective laser melting (SLM). This steel is widely used in various industries due to its versatile properties. The main methods of thermal and thermomechanical processing are briefly analyzed. Methods of improving plastic properties by impacting the material to pulses of a strong electromagnetic field, which causes high-density currents in the material considered as well. Based on the review, it is suggested that it is advisable to study the effect of a high-energy electromagnetic field on improving the plastic properties of materials built with selective laser melting.

About the authors

K. K. Kukudzhanov

Institute of Problems of Mechanics named after A.Yu. Ishlinsky of the Russian Academy of Sciences

Author for correspondence.
Email: kkukudzhanov@yandex.ru
Moscow, Russia

References

  1. Guo N., Leu M.C. Additive manufacturing: technology, applications and research needs // Front. Mech. Eng. 2013. V. 8. № 3. P. 215–243. https://doi.org/10.1007/s11465-013-0248-8
  2. Kanishev M.V., Ulyev M.U. Introduction to additive technologies. Vol. 1. Review of the main 3D printing technologies: textbook. (In Russian) M.: Publishing House of NUST “MISiS”, 2023. 352 p. ISBN: ISBN978-5-907560-37-6
  3. Dryepondt S., Nandwana P., Fernandez-Zelaia P., List F. Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion // Addit. Manuf. Elsevier B.V., 2021. V. 37. P. 101723. https://doi.org/10.1016/j.addma.2020.101723
  4. Brennan M.C., Keist J.S., Palmer T.A. Defects in Metal Additive Manufacturing Processes // J. Mater. Eng. Perform. 2021. V. 30. № 7. P. 4808–4818. https://doi.org/10.1007/s11665-021-05919-6
  5. Malekipour E., El-Mounayri H. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review // Int. J. Adv. Manuf. Technol. 2018. V. 95. № 1–4. P. 527–550. https://doi.org/10.1007/s00170-017-1172-6
  6. Zhang B., Li Y., Bai Q. Defect Formation Mechanisms in Selective Laser Melting: A Review // Chinese J. Mech. Eng. Chinese Mechanical Engineering Society, 2017. V. 30. № 3. P. 515–527. https://doi.org/10.1007/s10033-017-0121-5
  7. Khodabakhshi F., Farshidianfar M.H., Gerlich A.P., Nosko M., Trembošová V., Khajepour A. Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels // Addit. Manuf. 2020. V. 31. P. 100915. https://doi.org/10.1016/j.addma.2019.100915
  8. Noell Ph.J., Rodelas J.M., Ghanbari Z.N., Laursen Ch.M. Microstructural modification of additively manufactured metals by electropulsing // Addit. Manuf. 2020. V. 33. https://doi.org/10.1016/j.addma.2020.101128
  9. Xue L., Liao Ch., Wu M., Li Q., Hu Zh., Yang Y, Liu J. Improvement of mechanical properties and corrosion resistance of SLM-AlSi10Mg alloy by an eco-friendly electric pulse treatment // J. Clean. Prod. Elsevier Ltd, 2024. V. 439. P. 140864. https://doi.org/10.1016/j.jclepro.2024.140864
  10. Qin L.Y., Men J.H., Zhang L.S., Zhao S., Li C.F., Yang G., Wang W. Microstructure homogenizations of Ti-6Al-4V alloy manufactured by hybridselective laser melting and laser deposition manufacturing // Materials Science & Engineering A. 2019. V. 759. P. 404–414. https://doi.org/10.1016/j.msea.2019.05.049
  11. Nguyen H.D., Pramanik A., Basak A.K., Dong Y., Prakash C., Debnath S. et al. Additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties // J. Mater. Res. Technol. 2022. V. 18. P. 4641–4661. https://doi.org/10.1016/j.jmrt.2022.04.055
  12. Lai Wei-Jen, Ojha Avinesh, Li Ziang, Engler-Pinto Carlos, Su Xuming. Effect of residual stress on fatigue strength of 316L stainless steel produced by laser powder bed fusion process // Prog. Addit. Manuf. 2021. V. 6. № 3. P. 375–383. https://doi.org/10.1007/s40964-021-00164-8
  13. Elangeswaran Ch., Cutolo A., Muralidharan G.K., de Formanoir Ch., Berto F., Vanmeensel K., van Hooreweder B. Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion // Int. J. Fatigue. 2019. V. 123. P. 31–39. https://doi.org/10.1016/j.ijfatigue.2019.01.013
  14. Zhang M., Sun Ch.-N., Zhang X., Wei J., Hardacre D., Li H. High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling // Int. J. Fatigue. 2019. V. 121. P. 252–264. https://doi.org/10.1016/j.ijfatigue.2018.12.016
  15. Gel’atko M., Hatala M., Botko F., Vandžura R., Hajnyš J., Šajgalík M., Török J. Stress Relieving Heat Treatment of 316L Stainless Steel Made by Additive Manufacturing Process // Materials (Basel). 2023. V. 16. № 19. P. 6461. https://doi.org/10.3390/ma16196461
  16. Chadha K., Tian Yu., Spray J., Aranas C. Effect of Annealing Heat Treatment on the Microstructural Evolution and Mechanical Properties of Hot Isostatic Pressed 316L Stainless Steel Fabricated by Laser Powder Bed Fusion // Metals (Basel). 2020. V. 10. № 6. P. 753. https://doi.org/10.3390/met10060753
  17. Troitsky O.A., Baranov Yu.V., Avraamov Yu.S., Shlyapin A.D. Physical Foundations and Technologies for Processing Modern Materials (Theory, Technology, Structure, and Properties) [in Russian], in 2 V. V. 1, Institut Kompyuternykh Issledovaniy, Moscow-Izhevsk (2004).
  18. Kablov E.N., Orlov M.P., Ospennikova O.G. Mechanisms of porosity in the single-crystal turbine blades and kinetics of its elimination during hot isostatic pressing // Aviats. Mater. Tekhnol. 2012. № 5. Р. 117–129.
  19. Liverani E., Lutey A.H.A., Ascari A., Fortunato A. The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM) // Int. J. Adv. Manuf. Technol. The International Journal of Advanced Manufacturing Technology. 2020. V. 107. № 1–2. P. 109–122. https://doi.org/10.1007/s00170-020-05072-9
  20. Röttger A., Geenen K., Windmann M., Binner F., Theisen W. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material // Mater. Sci. Eng. A. Elsevier, 2016. V. 678. P. 365–376. https://doi.org/10.1016/j.msea.2016.10.012
  21. Grech I.S., Sullivan J.H., Lancaster R.J., Plummer J., Lavery N.P. The optimisation of hot isostatic pressing treatments for enhanced mechanical and corrosion performance of stainless steel 316L produced by laser powder bed fusion // Addit. Manuf. Elsevier B.V., 2022. V. 58. P. 103072. https://doi.org/10.1016/j.addma.2022.103072
  22. Leuders S., Lieneke T., Lammers S., Tröster T., Niendorf T. On the fatigue properties of metals manufactured by selective laser melting – The role of ductility // J. Mater. Res. 2014. V. 29. № 17. P. 1911–1919. https://doi.org/10.1557/jmr.2014.157
  23. Chao Q., Thomas S., Birbilis N., Cizek P., Hodgson P.D., Fabijanic D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel // Mater. Sci. Eng. A. Elsevier B.V., 2021. V. 821. P. 141611. https://doi.org/10.1016/j.msea.2021.141611
  24. Troitskii O.A., Likhtman V.I. The effect of the anisotropy of electron and g radiation on the deformation of zinc single crystals in the brittle state // J. Kokl. Akad. Nauk. SSSR. 1963. № 148. Р. 332–334.
  25. Beklemishev N.N, Koryagin N.I., Shapiro G.S. Influence of Locally Inhomogeneous Pulse Electric Field on Plasticity and Strength of Conducting Materials // Izv. Akad. Nauk SSSR. Met. 1984. № 4. Р. 184–187 [Russ. Metallurgy (Metally) (Engl. Transl.)].
  26. Beklemishev N.N, Koryagin N.I., Shapiro G.S. The process of plastic deformation in a pulsed electromagnetic field of some conductive materials // Izv. Akad. Nauk SSSR. Met. 1985. № 1. Р. 159–167.
  27. Beklemishev N.N., Kukudzhanov V.N., Porokhov V.A. et al. Plasticity and Strength of Metallic Materials with the Pulse Action of a High-Energy Electromagnetic Field Taken into Account, Preprint № 372 (IPM AN SSSR, Moscow, 1989) [in Russian].
  28. Klyushnikov V.D., Ovchinnikov I.V. Plane Problem of Effect of an Instantaneous Point Heat Source // Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela. 1988. № 4. Р. 118–122 [Mech. Solids (Engl. Transl.) V. 23. № 4. Р. 113–117.
  29. Conrad H. A study into the mechanism(s) for the electroplastic effect in metals and its application to metalworking, processing and fatigue. Final Report ARO Proposal Number 23090-MS, ARO Funding Document DAAL03-86-K-0015, U. S. Army Research Office, North Carolina. 1989. 52 р.
  30. Konovalov S.V., Ivanov Yu.F., Komissarova I.A., Kosinov D.A., Gromov V.E. Increasing the multicycle fatigue of titanium alloy under current action // Hardening technologies and coatings. 2019. V. 15. № 5 (173). Р. 213–218.
  31. Kukudzhanov K.V., Chentsov A.V. Investigation of the effect of pulse electromagnetic field on the healing damage of zinc // Perm National Research Polytechnic University Aerospace Bulletin. 2020. № 61. Р. 40–49. https://doi.org/10.15593/2224-9982/2020.61.05
  32. Kukudzhanov K.V., Chentsov A.V. On the healing of porosity in metal under the action of a high-energy electromagnetic field // Bulletin of the I.Ya. Yakovlev Chuvash State Pedagogical University. The Mechanics of the Limit State series. 2020. V. 2. № 44. Р. 116–131. https://doi.org/10.37972/chgpu.2020.44.2.012
  33. Ren X., Wang Zh., Fang X., Song H, Duan J. The plastic flow model in the healing process of internal microcracks in pre-deformed TC4 sheet by pulse current // Mater. Des. 2020. V. 188. P. 108428. https://doi.org/10.1016/j.matdes.2019.108428
  34. Xu Wenchen, Yang Chuan, Yu Haiping, Jin Xueze, Yang Guojing, Shan Debin, Guo Bin. Combination of eddy current and heat treatment for crack healing and mechanical-property improvement in magnesium alloy tube // J. Magnes. Alloy. 2021. V. 9. № 5. P. 1768–1781. https://doi.org/10.1016/j.jma.2020.08.022
  35. Kukudzhanov K.V. The effect of a short-pulse high-energy electromagnetic field on cracks in metal (experiment) // Actual problems of continuum mechanics: Proceedings of the VIII International Conference, Tsakhkadzor, October 01-05, 2023. Yerevan: Gitutyun, 2023. Р. 159–160.
  36. Kukudzhanov K.V., Levitin A.L., Khimulya V.V., Chentsov A.V. On the healing of mesocracks in metal under the influence of a pulsed high-energy electromagnetic field // XIII All-Russian Congress on Theoretical and Applied Mechanics: collection of abstracts: in 4 volumes, St. Petersburg, August 21–25, 2023. Saint Petersburg: Polytech Press, 2023. Р. 1217–1218.
  37. Zuev L.B., Tsellermaer V. Ya., Gromov V.E., Murav’ev V.V. Ultrasonic monitoring of the accumulation of aging damage and recovery of the useful lifetime of industrial parts // Tech. Phys. 1997. V. 42. № 9. P. 1094–1096. https://doi.org/10.1134/1.1258774
  38. Zuev L.B., Sosnin O. V., Chirakadze D.Z., Gromov V.E., Murav’ev V.V. Acoustic evaluation of the endurance of steel specimens and recovery of their serviceability // J. Appl. Mech. Tech. Phys. 1998. V. 39. № 4. P. 639–641. https://doi.org/10.1007/BF02471262
  39. Zuev L.B., Sosnin O.V., Podboronnikov S.F., Gromov V.E., Gorlova S.N. Healing fatigue damage in steel with electric current pulses // Technical Physics. 2000. V. 45. № 3. P. 309–311.
  40. Shengru Q., Yanli L., Yun L, Chengyu Zh. Damage Healing of Aluminum Alloys by D.C. Electropulsing and Evaluation by Resistance // Rare Met. Mater. Eng. 2009. V. 38. № 4. P. 570–573. https://doi.org/10.1016/S1875-5372(10)60027-6
  41. Gallo F., Satapathy S., Ravi-Chandar K. Plastic deformation in electrical conductors subjected to short-duration current pulses // Mech. Mater. 2012. V. 55. P. 146–162. https://doi.org/10.1016/j.mechmat.2012.07.001
  42. Hosoi Atsushi, Kishi Tomoya, Ju Yang. Healing of Fatigue Crack by High-Density Electropulsing in Austenitic Stainless Steel Treated with the Surface-Activated Pre-Coating // Materials (Basel). 2013. V. 6. № 9. P. 4213–4225. https://doi.org/10.3390/ma6094213
  43. Yu T., Deng D., Wang G., Zhang H. Crack healing in SUS304 stainless steel by electropulsing treatment // J. Clean. Prod. 2016. V. 113. P. 989–994. https://doi.org/10.1016/j.jclepro.2015.12.060
  44. Song Hui, Wang Zhong-jin Jin, He Xiao-dong Dong, Duan Jie. Self-healing of damage inside metals triggered by electropulsing stimuli // Sci. Rep. Springer US. 2017. V. 7. № 1. P. 7097. https://doi.org/10.1038/s41598-017-06635-9
  45. Wu Z., Wu S., Bao J., Qian W., Karabal, S., Sun W. et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion // Int. J. Fatig. 2021. V. 151. P. 106317. https://doi.org/10.1016/j. ijfatigue.2021.106317
  46. Sivukhin D.V. Obschiy kurs fiziki. T. 3. Elektrichestvo [The general course of physics. V. 3. Electricity], Moscow: Fizmatlit, 2004, 656 p. ISBN: 5-9221-0227-3; 5-89115-086-5. [in Russian]
  47. EOS Aluminium AlSi10Mg Material Data Sheet https://www.in3dtec.com/wp-content/uploads/2020/09/Aluminium_AlSi10Mg_-Data-sheet.pdf (15.08.2024).
  48. Silbernagel C., Ashcroft I., Galea M. Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors, Additive Manufacturing № 21, May 2018. https://doi.org/10.1016/j.addma.2018.03.027
  49. Kukudzhanov K.V., Kolomiets A.V., Levitin A.L. Processes of deformation and destruction of stochastically inhomogeneous elastic-viscous plastic materials with defects under electrodynamic and thermomechanical loads // Bulletin of the I.Ya. Yakovlev Chuvash State Pedagogical University. The Mechanics of the Limit State series. 2014. V. 4. № 22. Р. 11–21.
  50. Kukudzhanov K.V., Levitin A.L. Modeling the treatment of high-energy pulsed electromagnetic field of the micro-cracks in a polycrystalline metal // PNRPU Mechanics Bulletin. 2015. № 1. Р. 106–120. https://doi.org/10.15593/perm.mech/2015.4.09
  51. Salganik R.L. Thermoelastic Equilibrium of a Solid with Cracks under Heating Caused by Passage of a Current Perpendicular to the Cracks, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela. 1978. № 5. Р. 141–152 [Mech. Solids (Engl. Transl.). 1978. V. 13. № 5. Р. 129–138].
  52. Salganik R.L. Heating of a Material with an Ellipsoidal Nonuniformity as a Result of Electrical Losses // Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela. 1980. V. 15. № 6. Р. 98–109 [Mech. Solids (Engl. Transl.). 1980. V. 15. № 6. Р. 87–98].
  53. Qin R., Su Sh. Thermodynamics of crack healing under electropulsing // J. Mater. Res. 2002. V. 17. № 8. P. 2048–2052. https://doi.org/10.1557/JMR.2002.0303
  54. Kukudzhanov V.N., Kolomiets-Romanenko A.V. Study of the influence of electric current dynamical action on mechanical properties of materials with ordered structure of defects. Mechanics of Solids. 2010. № 3. Р. 188–199. https://doi.org/10.3103/S0025654410030167
  55. Kukudzhanov V.N., Kolomiets-Romanenko A.V. A model of thermoelectroplasticity of variations in the mechanical properties of metals based on defect structure reorganization under the action of pulse electric current. Mechanics of Solids. 2011. V. 46. № 6. P. 814–827. https://doi.org/10.3103/S0025654411060021
  56. Kolomiets A.V., Kukudzhanov V.N., Kukudzhanov K.V., Levitin A.L. Modeling inelastic fracture of inhomogeneous materials under electrodynamic and thermomechanical influences // Preprint № 1054. Ishlinsky Institute of Problems of Mechanics of the Russian Academy of Sciences, 2013. Р. 35.
  57. Yu J., Zhang H., Deng D., Hao Sh. Iqbal Asif. Numerical calculation and experimental research on crack arrest by detour effect and joule heating of high pulsed current in remanufacturing // Chinese J. Mech. Eng. 2014. V. 27. № 4. P. 745–753. https://doi.org/10.3901/CJME.2014.0414.075
  58. Kondratev N.S., Trusov P.V. Multilevel models of crystal plasticity and viscoplasticity in multiphase polycrystalline materials // PNRPU Mechanics Bulletin. 2015. № 1. Р. 76–105. https://doi.org/10.15593/perm.mech/2015.1.06
  59. Kukudzhanov K.V., Levitin A.L About the treatment of high energy pulsed electromagneticfield on the micro-cracks in elastoplastic conductive material // Problems of strength and plactisity. 2015. V. 77. № 3. P. 217–226. https://doi.org/10.32326/1814-9146-2015-77-3-217-226
  60. Kukudzhanov K.V., Levitin A.L. Modeling the healing of microcracks in metal stimulated by a pulsed high-energy electromagnetic field. Part I // Nanomechanics Sci. Technol. An Int. J. 2015. V. 6. № 3. P. 233–249. https://doi.org/10.1615/NanomechanicsSciTechnolIntJ.v6.i3.60
  61. Kukudzhanov K.V. On healing metal damages using high-energy pulsed electromagnetic field // PNRPU Mechanics Bulletin. 2017. № 2. Р. 99–124. https://doi.org/10.15593/perm.mec/2017.2.06
  62. Kukudzhanov K.V., Levitin A.L. Numerical simulation of damage evolution of a metal at treatment by high-density electric current -ulses// Vestnik “MIFI”. 2018. V. 7. № 6. P. 515–524. https://doi.org/10.1134/S2304487X1806007X
  63. Kukudzhanov K.V, Levitin A.L. Modelling of some mechanism of metal electroplasticity under pulsed high-energy electromagnetic field action // J. Phys. Conf. Ser. 2019. V. 1205. P. 012032. https://doi.org/10.1088/1742-6596/1205/1/012032
  64. Kukudzhanov K.V., Levitin A.L., Ugurchiev U.Kh. Healing of cracks in plates by strong electromagnetic field // J. Samara State Tech. Univ. Ser. Phys. Math. Sci. 2021. V. 25. № 1. P. 193–202. https://doi.org/10.14498/vsgtu1831
  65. Kukudzhanov K.V. Modeling of self-healing of microcracks in the process of longitudinal electroplastic rolling // J. Phys. Conf. Ser. 2022. V. 2231. № 1. P. 012022. https://doi.org/10.1088/1742-6596/2231/1/012022
  66. Guo H., Liu P, Qin X., Song Y., Qian D., Xie L. et al. Electroshock treatment dependent microstructural evolution and mechanical properties of near-β titanium alloy manufactured by directed energy deposition // Mater. Des. Elsevier Ltd, 2021. V. 212. P. 110286. https://doi.org/10.1016/j.matdes.2021.110286
  67. Xie L., Guo H., Song Y., Liu C., Wang Z., Hua L. et al. Effects of electroshock treatment on microstructure evolution and texture distribution of near-b titanium alloy manufactured by directed energy deposition // Mater. Charact. 2020. V. 161. P. 110137. https://doi.org/10.1016/j.jallcom.2022.163969
  68. Xie L., Liu C., Song Y., Guo H., Wang Z., Hua L. et al. Evaluation of microstructure variation of TC11 alloy after electroshocking treatment // J. Mater. Res. Technol. 2020. V. 9. № 2. Р. 2455–2466. https://doi.org/10.1016/j.jmrt.2019.12.076
  69. Cai Q., Rey Rodriguez P., Carracelas Santos S., Castro G., Mendis Ch.L., Chang I.T.H., Assadi H. Crack healing via electropulsing treatment applied to additive-manufactured TiC/316L stainless steel composites // Mater. Lett. Elsevier B. 2024. V. 365. P. 136410. https://doi.org/10.1016/j.matlet.2024.136410
  70. Fan Sh., He B., Liu M. Effect of Pulse Current Density on Microstructure of Ti-6Al-4V Alloy by Laser Powder Bed Fusion // Metals (Basel). 2022. V. 12. № 8. https://doi.org/10.3390/met12081327
  71. Yan X., Xu X., Wu Ch., Zhao Y., Li D., Zhou Y. et al. A novel electropulsing treatment to improve the surface strength and repair the pore of additively manufactured Ti-6Al-4V alloy // Surf. Coatings Technol. 2023. V. 458. № 5988. P. 129364. https:// doi.org/10.1016/j.surfcoat.2023.129364

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».