Temperature influence of metamaterials based on flexible TPU 95A plastic on resistance to penetration by a rigid striker
- Authors: Ivanova S.Y.1, Osipenko K.Y.1, Banichuk N.V.1, Lisovenko D.S.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics RAS
- Issue: No 1 (2025)
- Pages: 197-208
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/288563
- DOI: https://doi.org/10.31857/S1026351925010108
- EDN: https://elibrary.ru/szukeg
- ID: 288563
Cite item
Abstract
The mechanical properties of metamaterials with a cellular chiral internal structure were experimentally studied during normal penetration by a rigid spherical striker. The metamaterial samples were 3D printed from TPU 95A plastic (thermoplastic polyurethane). They had auxetic and non-auxetic chiral structures of cells in the form of concave and convex hexagons, respectively. The results of the experiments on sample penetration, conducted for two temperature and two speed modes, are presented. The relative loss of kinetic energy of the striker during penetration of auxetic samples was significantly higher than that of non-auxetic ones. It was found that for the studied types of flexible metamaterials, the resistance to striker penetration increases with increasing temperature in the considered temperature range. The dependence of the striker deviation on exit from the flexible sample on the type of chirality of the structure being penetrated was established.
Full Text

About the authors
S. Y. Ivanova
Ishlinsky Institute for Problems in Mechanics RAS
Author for correspondence.
Email: lisovenk@ipmnet.ru
Russian Federation, Moscow
K. Y. Osipenko
Ishlinsky Institute for Problems in Mechanics RAS
Email: lisovenk@ipmnet.ru
Russian Federation, Moscow
N. V. Banichuk
Ishlinsky Institute for Problems in Mechanics RAS
Email: lisovenk@ipmnet.ru
Russian Federation, Moscow
D. S. Lisovenko
Ishlinsky Institute for Problems in Mechanics RAS
Email: lisovenk@ipmnet.ru
Russian Federation, Moscow
References
- Lim T.-C. Auxetic Materials and Structures. Singapore: Springer, 2015. http://doi.org/10.1007/978-981-287-275-3
- Kolken H.M.A., Zadpoor A.A. Auxetic Mechanical Metamaterials // RSC Adv. 2017. V. 7. № 9. P. 5111–5129. http://doi.org/10.1039/C6RA27333E
- Ren X., Das R., Tran P. et al. Auxetic Metamaterials and Structures: A Review // Smart Mater. Struct. 2018. V. 27. № 2. P. 023001. https://doi.org/10.1088/1361-665X/aaa61c
- Wu W., Hu W., Qian G. et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review // Mater. Des. 2019. V. 180. P. 107950. https://doi.org/10.1016/j.matdes.2019.107950
- Gorodtsov V.A., Lisovenko D.S. Auxetics among materials with cubic anisotropy // Mech. Solids. 2020. V. 55. № 4. P. 461–474. https://doi.org/10.3103/S0025654420040044
- Shitikova M.V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A Review // Mech. Solids. 2022. V. 57. N 1. P. 1–33. http://doi.org/10.3103/S0025654422010022
- Novak N., Vesenjak M., Ren Z. Auxetic cellular materials-a review // Strojniški vestnik – Journal of Mechanical Engineering. 2016. V. 62. № 9. P. 485–493. https://doi.org/10.5545/sv-jme.2016.3656
- Kelkar P.U., Kim H.S., Cho K.-H. et. al. Cellular Auxetic Structures for Mechanical Metamaterials: A Review // Sensors. 2020. V. 20. № 11. P. 3132. https://doi.org/10.3390/s20113132
- Joseph A., Manesh V., Harursampath D. On the application of additive manufacturing methods for auxetic structures: A review // Adv. Manuf. 2021. V. 9. № 3. P. 342–368. https://doi.org/10.1007/s40436-021-00357-y
- Ivanova S.Yu., Osipenko K.Yu., Kuznetsov V. A., Solovyov N.G., Banichuk N.V., Lisovenko D.S. Experimental investigation of the properties of auxetic and non-auxetic metamaterials made of metal during penetration of rigid strikers // Mech. Solids. 2023. V. 58. № 2. P. 524–528. https://doi.org/10.3103/S0025654422601616
- Ivanova S.Yu., Osipenko K.Yu., Demin A.I., Banichuk N.V., Lisovenko D.S. Studying the properties of metamaterials with a negative Poisson’s ratio when punched by a rigid impactor // Mech. Solids. 2023. V. 58. № 5. P. 1536–1544. https://doi.org/10.3103/S0025654423600897
- Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Experimental study of the properties of metamaterials based on PLA plastic when perforated by a rigid striker // Mech. Solids. 2024. V. 59. № 4. P. 1967–1972. http://doi.org/10.1134/S0025654424604695
- Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. // Mech. Solids. 2024. V. 59. № 7. P. 3727–3734. https://doi.org/10.1134/S0025654424606633
- Gao Y., Huang H. Energy absorption and gradient of hybrid honeycomb structure with negative Poisson’s ratio // Mech. Solids. 2022. V. 57. № 5. P. 1118–1133. http://doi.org/10.3103/S0025654422050053
- Хing Y., Deng B., Cao M. et al. Influence of structural and morphological variations in orthogonal trapezoidal aluminum honeycomb on quasi-static mechanical properties // Mech. Solids. 2024. V. 59. № 1. P. 445–458. https://doi.org/10.1134/S0025654423602550
- Skripnyak V.V., Chirkov M.O., Skripnyak V.A. Modeling the mechanical response of auxetic metamaterials to dynamic effects // Vestn. PNIPU. Mekh. 2021. № 2. P. 144–152. http://doi.org/10.15593/perm.mech/2021.2.13
- Imbalzano G., Tran P., Lee P.V.S. et. al. Influences of material and geometry in the performance of auxetic composite structure under blast loading // Appl. Mech. Mater. 2016. V. 846. P. 476–481. http://doi.org/10.4028/www.scientific.net/amm.846.476
- Zhao X., Gao Q., Wang L. et. al. Dynamic crushing of double-arrowed auxetic structure un-der impact loading // Mater. Des. 2018. V. 160. P. 527–537. http://doi.org/10.1016/j.matdes.2018.09.041
- Li C., Shen H.S., Wang H. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core // Nonlinear Dyn. 2020. V. 100. P. 3235–3252. http://doi.org/10.1007/s11071-020-05686-4
- Qiao J.X., Chen C.Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs // Inter. J. Impact Eng. 2015. V. 83. P. 47–58. http://doi.org/10.1016/j.ijimpeng.2015.04.005
- Novak N., Starcevic L., Vesenjak M. et. al. Blast response study of the sandwich composite panels with 3D chiral auxetic core // Compos. Struct. 2019. V. 210. P. 167–178. https://doi.org/10.1016/j.compstruct.2018.11.050
- Yu Y., Fu T., Wang S., Yang C. Dynamic response of novel sandwich structures with 3D sinusoid-parallel-hybrid honeycomb auxetic cores: The cores based on negative Poisson’s ratio of elastic jump // Eur. J. Mech. – A/Solids. 2025. V. 109. P. 105449. https://doi.org/10.1016/j.euromechsol.2024.105449
- Shen Z.Y., Wen Y.K., Shen L.Y. et. al. Dynamic response and energy absorption characteristics of auxetic concave honeycomb pad for ballistic helmet under shock wave and bullet impact // Mech. Solids. 2024. V. 59. № 5. P. 3050–3067. https://doi.org/10.1134/S0025654424605159
- Jiang Q., Hao B., Chen G. et. al. Analysis of the penetration ability of exponential bullets on TPMS structures with variable density // Mech. Solids. 2024. V. 59. № 5. P. 3198–3211. https://doi.org/10.1134/S0025654424605640
Supplementary files
