Regular quaternion equations orbital motion in the earth’s gravitational field in KS-variables and their modifications. Reduction of dimensionality, first integrals of equations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Regular quaternion differential equations of the perturbed orbital motion of a cosmic body (in particular, a spacecraft, an asteroid) in the Earth’s gravitational field are considered, which take into account zonal, tesseral and sectorial harmonics of the field. These equations, unlike classical equations, are regular (do not contain special points such as singularity (division by zero)) for perturbed orbital motion in the central gravitational field of the Earth. In these equations, the main variables are four-dimensional Kustaanheim–Stiefel variables (KS-variables) or four-dimensional variables proposed by the author of the article, in which the equations of orbital motion have a simpler and symmetric structure compared to equations in KS-variables. Additional variables in the equations are orbital energy and time. The new independent variable is related to time by a differential relation containing the distance from the cosmic body to the Earth’s center of mass (the Sundman differential time transformation is used). Regular equations of perturbed orbital motion in quaternion osculating (slowly changing) variables are proposed. The equations are convenient for using methods of nonlinear mechanics and high-precision numerical calculations, in particular, for forecasting and correcting the orbital motion of spacecraft. In the case of orbital motion in the Earth’s gravitational field, the description of which takes into account the central and zonal harmonics of the field, the first integrals of the equations of orbital motion of the eighth order are given, changes of variables and transformations of these equations are considered, which made it possible to obtain closed systems of differential equations of the sixth order for the study of orbital motion, as well as systems of differential equations of the fourth and third orders, including a system of differential equations of the third order with respect to the distance from the cosmic body to the center of mass of the Earth and the sine of geocentric latitude, as well as a system of two integro-differential equations of the first order with respect to these two variables.

Texto integral

Acesso é fechado

Sobre autores

Y. Chelnokov

Institute of Precision Mechanics and Control Problems of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ChelnokovYuN@gmail.com
Rússia, Saratov

Bibliografia

  1. Euler L. De motu rectilineo trium corporum se mutuo attrahentium // Nov. Comm. Petrop. 1765. V. 11. P. 144–151.
  2. Levi-Civita T. Traettorie singolari ed urbi nel problema ristretto dei tre corpi // Ann. mat. pura appl. 1904. V. 9. P. 1–32.
  3. Levi-Civita T. Sur la regularization du probleme des trois corps // Acta Math. 1920. V. 42. P. 99–144. http://doi.org/10.1007/BF02418577
  4. Levi-Civita T. Sur la resolution qualitative du probleme restreint des trois corps // Opere mathematiche. 1956. № 2. P. 411–417.
  5. Kustaanheimo P. Spinor regularization of the Kepler motion // Ann. Univ. Turku. 1964. V. 73. P. 3–7. https://doi.org/10.1086/518165
  6. Kustaanheimo P., Stiefel E. Perturbation theory of Kepler motion based on spinor regularization // J. Reine Anqew. Math. 1965. V. 218. P. 204–219.
  7. Stiefel E.L., Scheifele G. Linear and Regular Celestial Mechanics. Berlin: Springer, 1971. 350 p.
  8. Chelnokov Yu.N. On regularization of the equations of the three-dimensional two body problem // Mech. Solids. 1981. V. 16. № 6. P. 1–10.
  9. Chelnokov Yu. N. Regular equations of the three-dimensional two body problem // Mech. Solids. 1984. V. 19. № 1. P. 1–7.
  10. Waldvogel J. Quaternions and the perturbed Kepler problem // Celestial Mechanics and Dynamical Astronomy. 2006. V. 95. P. 201–212.
  11. Waldvogel J. Quaternions for regularizing Celestial Mechanics: the right way // Celestial Mechanics and Dynamical Astronomy. 2008. V. 102. № 1. P. 149–162.
  12. Fukushima T. Efficient orbit integration by linear transformation for Kustaanheimo-Stiefel regularization // The Astronomical Journal. 2005. V. 129. № 5. 2496. https://doi.org/10.1086/429546
  13. Fukushima T. Numerical comparison of two-body regularizations // The Astronomical Journal. 2007. V. 133. № 6. 2815.
  14. Chelnokov Y.N., Loginov M.Y. New quaternion models of spaceflight regular mechanics and their applications in the problems of motion prediction for cosmic bodies and in inertial navigation in space. 28th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2021, 9470806.
  15. Chelnokov Yu.N., Sapunkov Ya.G., Loginov M.Yu., Schekutev A.F. Prediction and Correction of the Orbital Motion of Spacecraft using Regular Quaternion Equations and their Solutions in the Kustaanheimo–Stiefel Variables and Isochronic Derivatives // Mechanics of Solids. 2023. V. 58. № 7. P. 2478–2503. https://doi.org/10.3103/S0025654423070063
  16. Chelnokov Yu.N. Quaternion Regularization of the Eguations of the Perturbed Spatial Restricted Three-Body Problem: I // Mech. Solids. 2017. V. 52. № 6. 6. P. 613–639. https://doi.org/10.3103/S0025654417060036
  17. Chelnokov Yu.N. Quaternion regularization of the equations of the perturbed spatial restricted three-body problem: II // Mech. Solids. 2018. V. 53. № 6. P. 633–650. https://doi.org/10.3103/S0025654418060055
  18. Bordovitsyna T.V. Modern numerical methods in problems of celestial mechanics. M.: Nauka, 1984. 136 p.
  19. Bordovitsyna T.V., Avdyushev V.A. Theory of motion of artificial Earth satellites. Analytical and numerical methods. Tomsk: Publishing house Tom. Univ., 2007. 178 p.
  20. Chelnokov Yu.N. Quaternion methods and models of regular celestial mechanics and astrodynamics // Appl. Math.&Mech. 2022. V. 43. № 1. P. 21–80. https://doi.org/10.1007/s10483-021-2797-9
  21. Chelnokov Yu.N. Quaternion and Biquaternion Methods and Regular Models of Analytical Mechanics (Review) // Mechanics of Solid. 2023. V. 58. № 7. P. 2450–2477. https://doi.org/10.3103/S0025654423070051
  22. Chelnokov Yu.N. Quaternion Regularization of Singularities of Astrodynamics Models Generated by Gravitational Forces Review) // Mechanics of Solids. 2023. V. 58. № 8. P. 2855–2883. https://doi.org/10.3103/S0025654423080071
  23. Chelnokov Yu.N. Quaternion Equations of Disturbed Motion of an Artificial Earth Satellite // Cosmic Research. 2019. V. 57. № 2. P. 101–114. https://doi.org/10.1134/S0010952519020023
  24. Abalakin V.K., Aksenov E.P., Grebenikov E.A., Demin V.G., Ryabov Yu.A. A reference guide to celestial mechanics and astrodynamics. M.: Nauka, 1976.
  25. Duboshin G.N. Celestial mechanics: Methods of the theory of motion of artificial celestial bodies. M.: Nauka, 1983.
  26. Demin V.G. Movement of an artificial satellite in a non-central gravitational field. M.–Izhevsk: Research Center “Regular and Chaotic Dynamics”, Izhevsk Institute of Computer Research. 2010.
  27. Chelnokov Yu.N. Quaternion methods in problems of perturbed central motion of a material point. Part 1: General theory. Applications to the regularization problem and to the problem of satellite motion. M., 1985. 36 p. Dep. at VINITI 12/13/85. No. 218628-B.
  28. Chelnokov Yu.N. Application of quaternions in the theory of orbital motion of an artificial satellite. II // Cosmic Research. 1993. V. 31. № 3. P. 409–418.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».