Electroelasticity of disc piezofibrous actuator
- Authors: Pan’kov A.A.1
-
Affiliations:
- Perm National Research Polytechnic University
- Issue: No 5 (2024)
- Pages: 97–121
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/277080
- DOI: https://doi.org/10.31857/S1026351924050075
- EDN: https://elibrary.ru/UAQNRF
- ID: 277080
Cite item
Abstract
A microstructural model of a coiled composite piezofiber disc (FibrCD) actuator has been developed. The actuator is formed by winding a large number of turns of thin electrode-coated piezoelectric fiber, designed as shielded single-core cable with radially polarized piezoelectric interelectrode layers The winding is then impregnated and consolidated with a polymer binder. An exact analytical solution was obtained for the electrical and deformation fields of an axisymmetric coupled boundary problem of electroelasticity on the elementary composite cell "piezoelectric cable/binder shell." This exact solution for the electroelastic fields within the composite cell, subjected to an electric voltage applied to the cable electrodes, was subsequently used to derive exact analytical solutions for the tensors of effective piezoelectric stress coefficients and linear piezoelectric expansion (strain) of the fiber composite. These calculations treat the composite as a homogeneous material with cylindrical anisotropy, characteristic of the disc-shaped FibrCD actuator, based on the well-known polydisperse composite structure model. Calculations and numerical analysis of the FibrCD actuator’s characteristics were performed for various values of its macroscopic and structural parameters, including the thickness of the disc (ring), the difference between the outer and inner radii of the ring, and the relative dimensions of the conductive core radius and the thickness of the binder layer between adjacent cable turns. The effectiveness of the FibrCD actuator was confirmed in comparison with the characteristics of conventional actuators.
Full Text

About the authors
A. A. Pan’kov
Perm National Research Polytechnic University
Author for correspondence.
Email: a_a_pankov@mail.ru
Russian Federation, Perm
References
- Berlinkur D., Kerran D., ZHaffe G. P’ezoelektricheskie i p’ezomagnitnye materialy i ih primenenie v preobrazovatelyah [Piezoelectric and piezomagnetic materials and their applications in transducers] // Fizicheskaya akustika. T.1: Metody i pribory ul’trazvukovyh issledovanij. CHast’ A. Moscow: Mir, 1966. P. 204-326. (in Russian)
- Mezon U. P’ezoelektricheskie kristally i ih primeneniya v ul’traakustike [Piezoelectric crystals and their applications in ultraacoustics]. Moscow: Izd–vo inostr. lit., 1952. 448 p. (in Russian)
- Panich A.E. P’ezokeramicheskie aktyuatory [Piezoceramic actuators]. Rostov-on-Don: RGU, 2008. 160 p. (in Russian)
- Performance-drivencontrol of nano-motionsystems / by Roel J.E. Merry. – Eindhoven University of Technology, 2009. – 285 p.
- Pan’kov A.A. Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields // Sensors and Actuators A: Physical. 2019. V. 288. P. 171–176. https://doi.org/10.1016/j.sna.2019.01.030
- Patent US 2003/0056351 A1. Piezoelectric Macro-Fiber Composite Actuator and Method for Making Same / Wilkie W.K., et al. Application Publ. March 27, 2003.
- Patent RU № 2803015. P›ezoelektricheskij MDS-aktyuator [Piezoelectric MDS-actuator] / Pan’kov A.A., Opubl.: 05.09.2023 Byul. № 25, zayavka № 2023109123 ot 11.04.2023 g. (in Russian)
- Patent RU № 2801619. P›ezoelektricheskij CDS-aktyuator [Piezoelectric CDS-actuator] / Pan’kov A.A., Opubl.: 11.08.2023 Byul. № 23, zayavka № 2023111440 ot 03.05.2023 g. (in Russian)
- Patent RU № 2811420. Sposob izgotovleniya p›ezoelektricheskogo aktyuatora [Manufacturing method of piezoelectric actuator] / Pan’kov A.A., Opubl.: 11.01.2024 Byul. № 2, zayavka № 2023127236 ot 24.10.2023 g. (in Russian)
- Patent RU № 2811455. P›ezoelektricheskij aktyuator [Piezoelectric actuator] / Pan’kov A.A., Opubl.: 11.01.2024 Byul. № 2, zayavka № 2023113448 ot 24.05.2023 g. (in Russian)
- Emad D., Fanni M.A., Mohamed A.M., Yoshida S. Low-Computational-Cost Technique for Modeling Macro Fiber Composite Piezoelectric Actuators Using Finite Element Method // Materials (Basel). 2021. № 14(15). P. 4316.
- Park J.-S., Kim J.-H. Analytical development of single crystal Macro Fiber Composite actuators for active twist rotor blades // Smart Mater. Struct. 2005. № 14. P. 745–753. doi: 10.1088/0964-1726/14/4/033
- Sertifikat RU № 2018666421. Komp’yuternaya programma “MFC PROPERTIES” (MFCP) [Computer program “MFC PROPERTIES” (MFCP )] / Pisarev P.V., Anoshkin A.N., Pan›kov A.A., Opubl.: 17.12.2018. zayavka № 2018663978 ot 05.12.2018. (in Russian)
- Pan’kov A.A., Anoshkin A.N., Pisarev P.V., Bayandin S.R. Using an electromechanical analogy to describe the damping characteristics of an MFC actuator // IOP Conference Series: Materials Science and Engineering. 2021. V. 1093. P. 012023.
- Patent RU № 2811455. P’ezoelektricheskij aktyuator [Piezoelectric actuator] / Pan’kov A.A., Opubl.: 11.01.2024 Byul. № 2, zayavka № 2023113448 ot 24.05.2023 g. (in Russian)
- Patent RU № 2811499. P'ezoelektricheskij aktyuator [Piezoelectric actuator] / Pan’kov A.A., Opubl.: 12.01.2024 Byul. № 2, zayavka № 2023114457 ot 01.06.2023 g. (in Russian)
- Pan’kov A.A. Membrane piezoelectric MDS-actuator with a flat double helix of interacting electrodes // Mechanics of Solids. – 2024. V. 59, № 2. P. 664–678.
- Patent RU № 2793564. P’ezoelektricheskij bimorf izgibnogo tipa [Bending-type piezoelectric bimorph] / Pan’kov A.A., Opubl.: 04.04.2023 Byul. № 10, zayavka № 2022129727 ot 16.11.2022 g. (in Russian)
- Patent RU № 2827058.P'ezoelektricheskij FibrCD-aktyuator [Piezoelectric FibrCD-actuator] / Pan’kov A.A., Opubl.: 23.09.2024 Byul. № 27, zayavka № 2024102307 ot 30.01.2024 g. (in Russian)
- Patent US № 4629925. Piezoelectric coaxial cable / M. Booth, R.J. Penneck, Application Date: 20.11.1984. Publication Date: 16.12.1986. 8 p. https://patents.google.com/patent/US4629925A/en
- Patent US № 4609845. Stretched piezoeleci‘ric polymer coaxial cable / P.L. Soni, N.R. Farrar. Application Date: 06.07.1984. Publication Date: 02.09.1986. 7 p. https://insight.rpxcorp.com/patent/US4609845A
- Pan’kov A.A. P’ezokompozity i datchiki: monografiya v 3-h chastyah / CHast’ 1. Statisticheskaya mekhanika p’ezokompozitov [Piezocomposites and sensors: monograph in 3 parts / Part 1. Statistical mechanics of piezocomposites]. – Perm’: Izd-vo Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo universiteta, 2022. – 234 p. (in Russian)
- Pan’kov A.A. P’ezokompozity i datchiki: monografiya v 3-h chastyah / CHast’ 2. Piroelektromagnitnye effekty kompozitov [Piezocomposites and sensors: monograph in 3 parts / Part 2. Pyroelectromagnetic effects of composites]. – Perm’: Izd-vo Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo universiteta, 2023. – 211 p. (in Russian)
- Grinchenko V.T., Ulitko A.F., SHul›ga N.A. Mekhanika svyazannyh polej v elementah konstrukcij [Mechanics of connected fields in structural elements]. – Kiev: Nauk. dumka, 1989. 279 p. (in Russian)
- Vatul’yan A.O., Kiryutenko A.YU., Nasedkin A.V. Ploskie volny i fundamental’nye resheniya v linejnoj termoelektrouprugosti [Plane waves and fundamental solutions in linear thermoelectroelasticity] // PMTF. 1996. T. 37. № 5. P. 135–142. https://doi.org/10.1007/BF02369312 (in Russian)
- SHul’ga N.A. Radial’nye elektromekhanicheskie nestacionarnye kolebaniya pologo p’ezokeramicheskogo cilindra pri elektricheskom vozbuzhdenii [Radial electromechanical non-stationary oscillations of a hollow piezoceramic cylinder under electric excitation] // Prikladnaya mekhanika. 2009. T. 45. № 2. P. 30–35. (in Russian)
- Grigorenko A.A., Loza I.A. O svobodnyh neosesimmetrichnyh kolebaniyah polyh p’ezokeramicheskih cilindrov konechnoj dliny s radial’noj polyarizaciej [On free non-symmetric oscillations of hollow piezoceramic cylinders of finite length with radial polarization] // Prikladnaya mekhanika. 2010. T. 46. № 11. P. 20–30. (in Russian)
- Shlyahin D.A. Nestacionarnaya osesimmetrichnaya zadacha elektrouprugosti dlya anizotropnogo p’ezokeramicheskogo radial’no polyarizovannogo cilindra [Non-stationary axisymmetric electroelasticity problem for an anisotropic piezoceramic radially polarized cylinder] // Izv. RAN. MTT. 2009. № 1. P. 73–81. (in Russian)
- He T., Tian X., Shen Y. A generalized electromagneto-thermoelastic problem foran infinitely long solid cylinder // European Journal of Mechanics – A/Solids. 2005. V. 24. № 2. P. 349–359. https://doi.org/10.1016/j.euromechsol.2004.12.001
- Vatul’yan A.O., Nesterov S.A. Dinamicheskaya zadacha termoelektrouprugostidlya funkcional›no-gradientnogo sloya [Dynamic problem of thermoelectroelastic properties of the functional gradient layer] // Vychislitel›naya mekhanika sploshnyh sred. 2017. T. 10. № 2. P. 117–126. https://doi.org/10.7242/1999-6691/2017.10.2.10 (in Russian)
- Shlyahin D.A., Kal'mova M.A. Svyazannaya nestacionarnaya zadacha termoelektrouprugosti dlya dlinnogo pologo cilindra [Coupled transient thermoelectroelasticity problem for a long hollow cylinder] // Vestn. Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fiz.-mat. nauki. 2020. T. 24. № 4. P. 677–691. https://doi.org/10.14498/vsgtu1781 (in Russian)
- Belokon’ A.V., Skaliuh A.S. Matematicheskoe modelirovanie neobratimyh processov polyarizacii [Mathematical modeling of irreversible polarization processes]. Moscow: Fizmatlit, 2010. 328 p. (in Russian)
- Nasedkin A.V., Nasedkina A.A., Nassar M.E. Homogenization of porous piezocomposites with extreme properties at pore boundaries by effective moduli method // Mech.Solids, 2020. V. 55. P 827–836. https://doi.org/10.3103/S0025654420050131
- Nasedkin A.V., Nasedkina A.A., Rybyanets A.N. Numerical analysis of effective properties of heterogeneously polarized porous piezoceramic materials with local alloying pore surfaces // Materials Physics & Mechanics. 2018. V. 40. № 1. P. 12–21. http://dx.doi.org/10.18720/MPM.4012018_3
- Pan'kov A.A., Pisarev P.V. Numerical modeling in ANSYS of electroelastic fields in a piezo-electroluminescent fiber optic sensor for diagnosing the volumetric deformed state of the composite // PNRPU Mechanics Bulletin. 2017. № 3. P. 153-166. (in Russian)
- Pobedrya B.E. Mekhanika kompozicionnyh materialov [Mechanics of composite materials]. Moscow: Izd–vo Mosk. universiteta, 1984. 336 p. (in Russian)
- Getman I.P., Mol'kov V.A. Ob effektivnyh harakteristikah p’ezoaktivnyh kompozitov s cilindricheskimi vklyucheniyami [On the effective characteristics of piezoactive composites with cylindrical inclusions] // Prikladnaya matematika i mekhanika. 1992. T. 35. № 3. P. 501-509. (in Russian)
- Kristensen R. Vvedenie v mekhaniku kompozitov [Introduction to composites mechanics]. M.: Mir, 1982. 334 p. (in Russian)
- Dong X.-J., Meng G. Dynamic analysis of structures with piezoelectric actuators based on thermal analogy method // International Journal of Advanced Manufacturing Technology. 2006. V. 27. P. 841–844. https://doi.org/10.1007/s00170-004-2290-5
Supplementary files
