Relationship between the results of analytical solutions of elasticity theory problems and of stress state optimization in the vicinity of singular points
- Authors: Fedorov A.Y.1, Matveenko V.P.1
-
Affiliations:
- Institute of Continuous Media Mechanics UB RAS
- Issue: No 5 (2024)
- Pages: 3–17
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/277046
- DOI: https://doi.org/10.31857/S1026351924050013
- EDN: https://elibrary.ru/UBYNIB
- ID: 277046
Cite item
Abstract
The paper presents the results of two directions of the study of the stress-strain state in the vicinity of singular points of elastic bodies, namely: change of the type of boundary conditions; edges of the contact surface of different materials. The result of the first direction is the solution of elasticity theory problems in the vicinity of singular points, from which the possibility of infinite stresses at these points follows. The second direction is associated with the analysis by numerical and experimental methods of the stress state in the vicinity of singular points, which, as a rule, occur when modeling real objects and are potential stress concentration zones. The main content of the article is to establish, based on a comparison of the results of the two directions, the relationship between variants with a minimum stress level in the vicinity of singular points with the results on the nature of the stress singularity at these points.
Full Text

About the authors
A. Yu. Fedorov
Institute of Continuous Media Mechanics UB RAS
Author for correspondence.
Email: fedorov@icmm.ru
Russian Federation, Perm
V. P. Matveenko
Institute of Continuous Media Mechanics UB RAS
Email: mvp@icmm.ru
Russian Federation, Perm
References
- Kondrat’ev V. Boundary value problems for elliptic equations in domains with conical or angular points // Trans. Mosc. Math. Soc., 1967. Vol. 16. P. 227–313. http://mi.mathnet.ru/eng/mmo186
- Sinclair G.B. Stress singularities in classical elasticity – I: Removal, interpretation, and analysis // Appl. Mech. Rev. 2004. V. 57. № 4. P. 251–297. https://doi.org/10.1115/1.1762503
- Sinclair G.B. Stress singularities in classical elasticity – II: Asymptotic identification // Appl. Mech. Rev. 2004. V. 57. № 5. P. 385–439. https://doi.org/10.1115/1.1767846
- Paggi M., Carpinteri A. On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion // Appl. Mech. Rev. 2008. V. 61. № 2. 020801. https://doi.org/10.1115/1.2885134
- Carpinteri A., Paggi M. Asymptotic analysis in linear elasticity: from the pioneering studies by Wieghardt and Irwin until today // Eng. Fract. Mech. 2009. V. 76. № 12. P. 1771–1784. https://doi.org/10.1016/j.engfracmech.2009.03.012
- Pook L.P. A 50-year retrospective review of three-dimensional effects at cracks and sharp notches // Fatigue Fract. Eng. Mater. Struct. 2013. V. 36. № 8. P. 699–723. https://doi.org/10.1111/ffe.12074
- Koltunov M.A., Kuznetcov G.B., Matveenko V.P., Troianovskii I.E., Shardakov I.N. Optimization of axisymmetric body geometry in the presence of change of type of boundary conditions at the corner point // Pricladnye problemy prochnosti i plastichnosti. Gor`kii, 1978. № 9. P. 55-60.
- Borzenkov S., Matveenko V. Optimization of elastic bodies in the vicinity of singular points // Izv. RAN. Mekhanika Tverdogo Tela, 1996. № 2. P. 93–100.
- Matveyenko V.P., Borzenkov S.M. Semianalytical singular element and its application to stress calculation and optimization // Int. J. Numer. Meth. Eng. 1996. V. 39. № 10. P. 1659–1680. https://doi.org/10.1002/(SICI)1097-0207(19960530)39:10%3C1659::AID-NME919%3E3.0.CO;2-W
- Timoshenko S.P., Goodier J.N. Theory of Elasticity. 3rd edition, N.Y.: McGraw-Hill, 1970. 608 p.
- Kovrov V.N., Zolotukhin V.G. Experimental studies on the adhesion strength of a polymer-metal bond depending on the contact zone geometry // Mechanics of Composite Materials. 1999. V. 35. № 4. P. 335–338. https://doi.org/10.1007/BF02259722
- Dempsey J.P. Sinclair G.B. On the singular behavior at the vertex of a bi-material wedge // J. Elasticity. 1981. V. 11. P. 317–327. https://doi.org/10.1007/BF00041942
- Chobanyan K. Stress State in Compound Elastic Bodies. Yerevan: Armenian Academy of Sciences Press, 1987. 338 p.
- Wu Z. Design free of stress singularities for bi-material components // Compos. Struct. 2004. V. 65. № 3–4. P. 339–345. https://doi.org/10.1016/j.compstruct.2003.11.009
- Xu L.R., Kuai H., Sengupta S. Dissimilar material joints with and without free-edge stress singularities: Part I. A biologically inspired design // Exp. Mech. 2004. V. 44. P. 608–615. https://doi.org/10.1007/BF02428250
- Xu L.R., Sengupta S. Dissimilar material joints with and without free-edge stress singularities: Part II. An integrated numerical analysis // Exp. Mech. 2004. V. 44. P. 616–621. https://doi.org/10.1007/BF02428251
- Wang P., Xu L.R. Convex interfacial joints with least stress singularities in dissimilar materials // Mech. Mater. 2006. V. 38. № 11. P. 1001–1011. https://doi.org/10.1016/j.mechmat.2005.10.002
- Baladi A., Arezoodar A.F. Dissimilar materials joint and effect of angle junction on stress distribution at interface // Int. J. Mech. Aero.Indust. Mechatron. Manufacturing Eng. 2011. V. 5. № 7. P. 1184–1187.
- Park J., Anderson W.J. Geometric optimization of two bonded wedges involving stress singularities // Compos. Eng. 1994. V. 4. № 9. P. 901–912. https://doi.org/10.1016/0961-9526(94)90034-5
- Fedorov A.Y., Matveenko V.P. Optimization of geometry and mechanical characteristics of elastic bodies in the vicinity of singular points // Acta Mechanica. 2018. V. 229. P. 645–658. https://doi.org/10.1007/s00707-017-1990-5
- Wetherhold R.C., Dargush G.F. Improvement of adhesive strength at a bi-material interface by adjusting the interface angles at the free edge // Theor. Appl. Fract. Mech. 2015. V. 77. P. 69–73. https://doi.org/10.1016/j.tafmec.2015.02.002
- Velde B. Structure of surface cracks in soil and muds // Geoderma. 1999. V. 93. № 1–2. P. 101–124. https://doi.org/10.1016/S0016-7061(99)00047-6
- Tang C., Shi B., Liu C., Zhao L., Wang B. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils // Eng. Geol. 2008. V. 101. № 3–4. P. 204–217. https://doi.org/10.1016/j.enggeo.2008.05.005
- Shorlin K.A., de Bruyn J.R., Graham M., Morris S.W. Development and geometry of isotropic and directional shrinkage-crack patterns // Phys. Rev. E. 2000. V. 61. № 6. P. 6950–6957. https://doi.org/10.1103/PhysRevE.61.6950
- Vogel H.-J., Hoffmann H., Roth K. Studies of crack dynamics in clay soil: I. Experimental methods, results, and morphological quantification // Geoderma. 2005. V. 125. № 3–4, P. 203–211. https://doi.org/10.1016/j.geoderma.2004.07.009
- Le Roux S., Medjedoub F., Dour G., Rézaï-Aria F. Image analysis of microscopic crack patterns applied to thermal fatigue heat-checking of high temperature tool steels // Micron. 2013. V. 44. P. 347–358. https://doi.org/10.1016/j.micron.2012.08.007
- Korneta W., Mendiratta S.K., Menteiro J. Topological and geometrical properties of crack patterns produced by the thermal shock in ceramics // Phys. Rev. E. 1998. V. 57. № 3. P. 3142–3152. https://doi.org/10.1103/PhysRevE.57.3142
- Scott G.J.T., Webster R., Nortcliff S. An analysis of crack pattern in clay soil: its density and orientation // J. Soil Sci. 1986. V. 37. № 4. P. 653–668. https://doi.org/10.1111/j.1365-2389.1986.tb00394.x
- Montigny A., Walwer D., Michaut C. The origin of hierarchical cracks in floor-fractured craters on Mars and the Moon // Earth Planet. Sci. Lett. 2022. V. 600. 117887. https://doi.org/10.1016/j.epsl.2022.117887
- https://www.europlanet-society.org/patterns-in-mars-crater-floors-give-picture-of-drying-lakes-epsc0905/ (Дата обращения 18.07.2024)
- Fedorov A.Yu., Galkina E.B. Comparison of general regularities inherent to structures of surface cracks and stresses near the tips of spatial cracks // Computational Continuum Mechanics. 2023. V. 16. № 3. P. 375–386. https://doi.org/10.7242/1999-6691/2023.16.3.32
Supplementary files
