The nye cells and figures for athermic hemitropic, isotropic and ultraisotropic micropolar elastic solids
- Autores: Krylova E.Y.1, Murashkin E.V.2, Radaev Y.N.2
-
Afiliações:
- Saratov State University
- Ishlinsky Institute for Problems in Mechanics RAS
- Edição: Nº 3 (2024)
- Páginas: 183–198
- Seção: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/273731
- DOI: https://doi.org/10.31857/S1026351924030124
- EDN: https://elibrary.ru/ugvsuz
- ID: 273731
Citar
Resumo
The paper deals with a method of the Nye figures construction for micropolar elastic solids. The method of tensors of the 4th and 3rd ranks representations by means of blocks of two-dimensional matrices and relationships between their elements is widely known in crystallography. Such approach makes it possible to simply determine the number of independent constitutive constants for micropolar elastic solids and guarantee the absence of relationships between them. In frameworks of the present study, the two-dimensional Nye figures for an ultraisotropic micropolar elastic solid were figured out based on the corresponding figures for hemitropic and isotropic micropolar elastic solids. It is shown that the constitutive tensors of ultraisotropic material characterized by only 4 independent constitutive constants: shear modulus of elasticity, Poisson’s ratio, characteristic nano/microlength and another dimensionless constant.
Sobre autores
E. Krylova
Saratov State University
Autor responsável pela correspondência
Email: kat.krylova@bk.ru
Rússia, Saratov
E. Murashkin
Ishlinsky Institute for Problems in Mechanics RAS
Email: murashkin@ipmnet.ru
Rússia, Moscow, 119526
Yu. Radaev
Ishlinsky Institute for Problems in Mechanics RAS
Email: radayev@ipmnet.ru
Rússia, Moscow, 119526
Bibliografia
- Cosserat E., Cosserat F. Théorie des corps déformables. Paris: Herman et Fils, 1909. vi+226 p.
- Besdo D. Ein beitrag zur nichtlinearen theorie des Cosserat-kontinuums // Acta Mechanica. 1974. Vol. 20. №. 1. P. 105–131.
- Nowacki W. Theory of micropolar elasticity. Berlin: Springer, 1972. 285 р.
- Nowacki W. Theory of asymmetric elasticity. Oxford: Pergamon Press, 1986. 383 p.
- Lakes R. Composites and metamaterials. Singapore: World Scientific, 2020.
- Nye J.F. Physical Properties of Crystals, their representation by tensors and matrices. Oxford: Clarendon Press, 1957. 322+xv p.
- Wooster W.A. Experimental Crystal Physics. Oxford: Clarendon Press, 1957. 116+vi p.
- Voigt W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Fachmedien, Wiesbaden: Springer, 1966. XXVI+979 p.
- Standards on Piezoelectric Crystals. New York: Proceedings of the I.R.E., 1949. 18 p.
- Zheng Q. S., Spencer A. J. M. On the canonical representations for Kronecker powers of orthogonal tensors with application to material symmetry problems // Int. J. Engng Sci. 1993. V. 31. Iss. 4. pp. 617–435. https://doi.org/10.1016/0020-7225(93)90054-X
- Murashkin E.V., Radayev Y.N. Two-dimensional nye figures for some micropolar elastic solids // Mechanics of Solids. 2023. V. 58. № 6. P. 2254–2268. https://doi.org/10.3103/S0025654423700243
- Murashkin E.V., Radayev Y.N. Two-dimensional Nye figures for hemitropic micropolar elastic solids // Izvestiya of saratov university. Mathematics. Mechanics. Informatics 2024. V. 24. № 1. P. 109–122. https://doi.org/10.18500/1816-9791-2024-24-1-109-122
- Murashkin E.V. On a method of constructing Nye figures for asymmetric theories of micropolar elasticity // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2023. № 3 (57). P. 100–111. https://doi.org/10.37972/chgpu.2023.57.3.009
- Murashkin E.V., Radayev Y.N. On the Theory of covariant differentiation of two point pseudotensor fields // Mechanics of Solids. 2022. V. 57. № 6. P. 1365–1373. https://doi.org/10.3103/s0025654422060255
- Murashkin E.V., Radayev Y.N. Covariantly constant tensors in Euclidean spaces. Elements of the theory // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2022. № 2 (52). P. 106–115. https://doi.org/10.37972/chgpu.2022.52.2.012
- Murashkin E.V., Radayev Y.N. Covariantly constant tensors in Euclidean spaces. Applications to continuum mechanics, // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2022. № 2 (52). P. 118–127. https://doi.org/10.37972/chgpu.2022.52.2.013
- Radayev Yu.N., Murashkin E.V. Generalized pseudotensor formulations of the Stokes’ integral theorem // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2022. V. 22. № 2. P. 205–215. https://doi.org/10.18500/1816-9791-2022-22-2-205-215
- Radayev Yu.N., Murashkin E.V., Nesterov T.K. On covariant non-constancy of distortion and inversed distortion tensors // Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2022. V. 26. № 1. P. 36–47. https://doi.org/10.14498/vsgtu1891
- Gurevich G.B. Foundations of the theory of algebraic invariants. Groningen: Noordhoff, 1964. 429 p.
- McConnell A.J. Application of Tensor Analysis. New York: Dover Publications Inc., 1957. xii+38 p.
- Sokolnikoff I.S. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. John Wiley & Sons Inc, 1964. 361 p.
- Radayev Yu.N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2018. V. 22. № 3. P. 504–517. https://doi.org/10.14498/vsgtu1635
- Murashkin E.V., Radayev Y.N. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki. 2021. Vol. 25. № 3. P. 457–474. https://doi.org/10.14498/vsgtu1870
- Radayev Y.N., Murashkin E.V. Pseudotensor formulation of the mechanics of hemitropic micropolar media // Probl. Prochn. Plastichn. 2020. V. 82. № 4. P. 399–412. https://doi.org/10.32326/1814-9146-2020-82-4-399-412
- Murashkin E.V., Radayev Yu.N. On a micropolar theory of growing solids // Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2020. V. 24. № 3. P. 424–444. https://doi.org/10.14498/vsgtu1792
- Kovalev V.A., Murashkin E.V., Radayev Yu.N. On the Neuber theory of micropolar elasticity. Apseudotensor formulation // Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2020. V. 24. № 4. P. 752–761. https://doi.org/10.14498/vsgtu1799
- Schouten J.A., Tensor Analysis for Physicist. Oxford, Clarendon Press, 434 p.
- Synge J.L., Schild A. Tensor calculus. V. 5. Courier Corporation, 1978. 334 p.
- Murashkin E.V., Radayev Yu.N. On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki. 2021. V. 25. № 4. P. 776–786. https://doi.org/10.14498/vsgtu1883
- Murashkin E.V., Radaev Y.N. On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space // Mechanics of Solids. 2022. V. 57. №. 2. P. 205–213. https://doi.org/10.3103/s0025654422020108
- Murashkin E.V., Radayev Y.N. The schouten force stresses in continuum mechanics formulations // Mechanics of Solids. 2023. V. 58. №. 1. P. 153–160. https://doi.org/10.3103/s0025654422700029
- Radaev Y.N. Tensors with Constant Components in the Constitutive Equations of Hemitropic Micropolar Solids // Mechanics of Solids. 2023. V. 58. № 5. P. 1517–1527. https://doi.org/10.3103/S0025654423700206
- Murashkin E.V., Radayev Y.N. Reducing natural forms of hemitropic energy potentials to conventional ones // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2022. № 4 (54). P. 108–115. https://doi.org/10.37972/chgpu.2022.54.4.009
- Murashkin E.V., Radayev Y.N. On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids // Vestn. Chuvash. Gos. Ped. Univ. Im. I.Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2022. № 3 (53). P. 86–100. https://doi.org/10.37972/chgpu.2022.53.3.010
- Murashkin E.V. On the relationship of micropolar constitutive parameters of thermodynamic state potentials // Vestn. Chuvash. Gos. Ped. Univ. Im. I.Ya. Yakovleva Ser.: Mekh. Pred. Sost. 2023. № 1 (55). P. 110–121. https://doi.org/10.37972/chgpu.2023.55.1.012
- Jeffreys H. Cartesian Tensors. Cambridge University Press, 1931. 101 p.
Arquivos suplementares
