Modeling of sliding contact of a system of asperities and coated viscoelastic half-space
- Authors: Stepanov F.I.1, Torskaya E.V.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- Issue: No 3 (2024)
- Pages: 164–182
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/273729
- DOI: https://doi.org/10.31857/S1026351924030117
- EDN: https://elibrary.ru/uhrnlk
- ID: 273729
Cite item
Abstract
Problem of sliding of a periodic system of asperities along the boundary of a viscoelastic half-space with a coating is under consideration. The coating is modeled by a layer with flexural rigidity. The solution is based on reducing the problem to the contact of a limited system of asperities with the action of others being replaced by distributed pressure; the accuracy of such approach is evaluated. The numerical-analytical solution is based on double integral Fourier transforms, the boundary element method and the iterative procedure. The influence of the shape of asperities, sliding velocity, and coating thickness on the deformation component of the friction force and on the effect of mutual influence of asperities was analyzed. To identify the effect of mutual influence, a comparison was made of the results (distribution of contact pressure and friction force) obtained for multiple contacts and for the isolated asperity. For comparison, the results of solving a similar problem for viscoelastic half-space without a coating were obtained and analyzed.
Keywords
About the authors
F. I. Stepanov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Author for correspondence.
Email: stepanov_ipm@mail.ru
Russian Federation, Moscow
E. V. Torskaya
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Email: torskaya@mail.ru
Russian Federation, Moscow
References
- Borodich F.M., Onishchenko D.A. Similarity and fractality in the modelling of roughness by a multilevel profile with hierarchical structure // Int. J. Solids Struct. 1999. V. 36. P. 2585–2612. https://doi.org/10.1016/S0020-7683(98)00116-4
- Klüppel M., Heinrich G. Rubber Friction on Self-Affine Road Tracks // Rubber Chem. Technol. 2000. V. 73. № 4. P. 578–606. https://doi.org/10.5254/1.3547607
- Persson B.N.J. Theory of rubber friction and contact mechanics // J. Chem. Phys. 2001. V. 115. P. 3840–3861. https://doi.org/10.1063/1.1388626
- Li Q., Popov M., Dimaki A., Filippov A.E., Kürschner S., Popov V.L. Friction between a viscoelastic body and a rigid surface with random self-affine roughness // Phys Rev Lett. 2013. № 111. P. 034301. https://doi.org/10.1103/PhysRevLett.111.034301
- Nettingsmeier J., Wriggers P. Frictional contact of elastomer materials on rough rigid surfaces // PAMM Proc Appl Math Mech. 2004. № 4. P. 360–361. https://doi.org/10.1007/1-4020-5370-3_331
- Carbone G., Putignano C.A. Novel methodology to predict sliding and rolling friction of viscoelastic materials: theory and experiments //J. Mech. and Phys. Sol. 2013. V. 61. № 8. P. 1822–1834. https://doi.org/10.1016/j.jmps.2013.03.005
- Carbone G., Putignano C. Rough viscoelastic sliding contact: Theory and experiments // Phys Rev. 2014. № E89. P. 032408. https://doi.org/10.1103/PhysRevE.89.032408
- Scaraggi M., Persson B.N.J. Friction and universal contact area law for randomly rough viscoelastic contacts // J Phys Condens Matter. 2015. № 27. P. 105102. https://doi.org/10.1088/0953-8984/27/10/105102
- Menga N., Afferrante L., Demelio G.P., Carbone, G. Rough contact of sliding viscoelastic layers: Numerical calculations and theoretical predictions // Tribol. Int. 2018. № 122. P. 67–75. https://doi.org/10.1016/j.triboint.2018.02.012
- Kane M.Do., M.-T., Cerezo V., Rado Z., Khelifi C. Contribution to pavement friction modelling: an introduction of the wetting effect // Int. J. Pavement Eng. 2019. V. 20. № 8. P. 965–976. https://doi.org/10.1080/10298436.2017.1369776
- Soldatenkov I.A. Calculation of friction for indenter with fractal roughness that slides against a viscoelastic foundation // J. Frict. Wear. 2015. V. 36. № 3. P. 193–196. https://doi.org/10.3103/S1068366615030137.
- Barber J.R. Contact Mechanics. Dordrecht. The Netherlands: Springer, 2018. 585 p.
- Chen W., Wang Q., Huan Z., Luo X. Semi-analytical viscoelastic contact modeling of polymer-based materials // J Trib. 2011. V. 133. № 4. P. 041404. https://doi.org/10.1115/1.4004928
- Koumi K.E. et al. Contact analysis in the presence of an ellipsoidal inhomogeneity within a half space // Int J Sol Struc. 2014. Vol. 51. № 6. P. 1390–1402. https://doi.org/10.1016/j.ijsolstr.2013.12.035
- Koumi K.E., Chaise T., Nelias D. Rolling contact of a rigid sphere/sliding of a spherical indenter upon a viscoelastic half-space containing an ellipsoidal inhomogeneity // J Mech Phys Sol. 2015. V. 80. P. 1–25. https://doi.org/10.1016/j.jmps.2015.04.001
- Kusche S. Frictional force between a rotationally symmetric indenter and a viscoelastic half-space // ZAMM J Appl Math Mech. 2016. P. 1–14. https://doi.org/10.1002/zamm.201500169
- Aleksandrov V.M., Goryacheva I.G., Torskaya E.V. Sliding contact of a smooth indenter and a viscoelastic half-space (3D problem) // Dokl. Phys. 2010. V. 55. P. 77–80. https://doi.org/10.1134/S1028335810020084
- Goryacheva I.G., Stepanov F.I., Torskaya E.V. Sliding of a smooth indentor over a viscoelastic half-space when there is friction // J. Appl. Math. Mech. 2015. V. 79. № 6. P. 596–603. https://doi.org/10.1016/j.jappmathmech.2016.04.006
- Sheptunov B.V., Goryacheva, I.G., Nozdrin M.A. Contact problem of die regular relief motion over viscoelastic base // J. Frict. Wear. 2013. V. 34. P. 83–91. https://doi.org/10.3103/S1068366613020086
- Menga N., Putignano C., Carbone G., Demelio G.P. The sliding contact of a rigid wavy surface with a viscoelastic half-space // Proc. R. Soc. A. 2014. V. 470. № 2169. P. Article number 20140392. https://doi.org/10.1098/rspa.2014.0392
- Goryacheva I.G., Makhovskaya Y.Y. Sliding of a wavy indentor on a viscoelastic layer surface in the case of adhesion // Mech. Solids. 2015. V. 50. № 4. P. 439–450. https://doi.org/10.3103/S002565441504010X.
- Hunter S.C. The Hertz problem for a rigid spherical indenter and a viscoelastic half-space // J Mech Phys Solids. 1960. V. 8. P. 219–234. https://doi.org/10.1016/0022-5096(60)90028-4
- Wang D., de Boe G., Neville A., Ghanbarzadeh A.A. Review on Modelling of Viscoelastic Contact Problems. // Lubricants. 2022. № 10. P. 358. https://doi.org/10.3390/lubricants10120358
- Stepanov F.I., Torskaya E.V. Effect of Surface Layers in Sliding Contact of Viscoelastic Solids (3-D Model of Material) // Front. Mech. Eng. 2019. V. 5. P. 26. https://doi.org/10.3389/fmech.2019.00026
- Goryacheva I.G. Mechanics of friction interaction. Moscow: Nauka. 2001. 478 p.
- Nikishin V.S., Shapiro G.S. Space Problems of Elasticity Theory for Multilayered Media // Moscow: Vych. Tsentr Akad Nauk SSSR. 1970. 260 p.
Supplementary files
