Membrane piezoelectric MDS-actuator with a flat double spiral of interacting electrodes
- Authors: Pan’kov A.A.1
-
Affiliations:
- Perm National Research Polytechnic University
- Issue: No 2 (2024)
- Pages: 139-165
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/269826
- DOI: https://doi.org/10.31857/S1026351924020056
- EDN: https://elibrary.ru/uwiako
- ID: 269826
Cite item
Abstract
A schematic diagram and mathematical model of functioning of a new piezoelectric membrane (MDS) actuator with double spiral (DS) electrodes on the upper and/or lower surfaces of a thin piezoelectric layer with axisymmetric and periodic (with a small period) in radial coordinate mutual reversed electric polarization are presented. The polarization of the layer was realized as a result of connecting the polarizing electric voltage of the appropriate value to the outputs of the double spirals of the electrodes. The electrodes of each (upper and lower) double spiral of the MDS-actuator are made in the form of electrodeposited ribbon coatings on the surfaces of the piezoelectric layer in close proximity to each other (due to the small spiral pitch) to create high values of electric field strength along the lines of force in localized areas of the piezoelectric layer between them when an alternating or constant control electric voltage is connected to the electrodes, in particular, with positive and negative values of the electrical potentials. Importantly, the electric field force lines and, as a consequence, the polarization of the piezoelectric layer of the MDS actuator are oriented mainly along (i.e. towards or against) the radial coordinate of the membrane, in contrast to many conventional actuator schemes. The results of numerical modeling for a circular elastic membrane with piezoelectric actuators installed on its upper and lower surfaces confirmed the effectiveness of the proposed piezoelectric MDS-actuator when it functions according to the “bimorph” scheme, including the use of the proposed new structural element (section) – a piezoelectric “compression ring” MDS at various geometric and control parameters. The effect of a significant increase in the membrane deflection with installed piezoelectric MDS-actuators compared to the use of traditional homogeneous plate piezoelectric actuators of bimorph type for different conditions of the membrane fixation, in particular, stationary (rigid) fixation of its center is revealed. For a hybrid piezoelectric MDS-actuator including independent concentric round and circular (i.e. “compression ring”) sections, the non-monotonic nature and numerical analysis of the nonlinear dependence of the largest deflection at the center of a hinge-immobile membrane fixed at the edge on the ratio of the radii of its round and circular MDS sections were revealed. The cases in which the effect of the “compression ring” is manifested, i.e. when the maximum deflection of a membrane with the “compression ring” exceeds the best possible value of the deflection of this membrane without its use in the traditional “bimorph” scheme, are identified. The new piezoelectric MDS-actuator can be used in micromechanics, controlled optics, sensor technology, acoustics, in particular, in the manufacture of piezoelectric acoustic or sensor elements of membrane type, electromechanical transducers for vibration energy collection.
About the authors
A. A. Pan’kov
Perm National Research Polytechnic University
Author for correspondence.
Email: a_a_pankov@mail.ru
Russian Federation, Perm
References
- Tzou H.S. Piezoelectric shells (Distributed sensing and control of continua). Kluwer Academic Publishers. 1993. 320 p.
- Rubio W.M., Vatanabe S.L., Paulino G.H., Silva E.C.N. Functionally graded piezoelectric material systems – a multiphysics perspective / In book Advanced computational materials modeling: from classical to multi-scale techniques. Ed. M. Vaz Jr., E.A. de Souza Neto, P.A. Munoz-Rojas. Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, 2011. 414 p. P. 30–339; https://doi.org/10.1002/9783527632312
- Ebrahimi F. Piezoelectric materials and devices - practice and applications. IntechOpen, 2013. 176 p. https://doi.org/10.5772/45936
- Uorden K. Novye intellektual’nye materialy i konstrukcii. Svojstva i primenenie [New intelligent materials and structures. Properties and application]. M.: Tekhnosfera, 2006. 224 p
- Berlinkur D., Kerran D., ZHaffe G. P’ezoelektricheskie i p’ezomagnitnye materialy i ih primenenie v preobrazovatelyah / Fizicheskaya akustika. T. 1: Metody i pribory ul’trazvukovyh issledovanij. CHast’ A [Piezoelectric and piezomagnetic materials and their application in transducers/Physical acoustics. V. 1: Ultrasound methods and instruments. Part A]. M.: Mir, 1966. P. 204–326.
- Han J.M., Adriaens T.A., Koning W.L., Banning R. Modelling Piezoelectric Actuators // IEEE/ASME Transactions on Mechatronics. 2000. V. 5. № 4. P. 331–341; https://doi.org/10.1109/3516.891044
- Ivan I.A., Rakotondrabe M., Lutz P., Chaillet N. Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators // Review of Scientific Instruments. American Institute of Physics. 2009. V. 80. № 6. P. 065102–1/065102-8; https://doi.org/10.1063/1.3142486
- Sofronov A., Nikiforov V., Klimashin V. Bimorfnye p’ezoelektricheskie elementy: aktyuatory i datchiki [Bimorphic piezoelectric elements: actors and sensors] // Komponenty i tekhnologii. 2003. V. 30. № 4. P. 46–48.
- Zhu D., Almusallam A., Beeby S.P., Tudor J., Harris N.R. A bimorph multi-layer piezoelectric vibration energy harvester // PowerMEMS 2010 Proceedings. Belgium, Leuven. 2010. P. 1–4.
- Bansevičius R., Navickaitė S., Jūrėnas V., Mažeika D., Lučinskis R., Navickas J. Investigation of novel design piezoelectric bending actuators // Journal of Vibroengineering. 2013. V. 15. № 2. P. 1064–1068.
- Vatul’yan A.O., Getman I.P., Lapickaya N.B. Ob izgibe p’ezoelektricheskoj bimorfnoj plastiny [On bending of a piezoelectric bimorph plate] // Prikladnaya mekhanika. 1991. V. 27. № 10. P. 101–105.
- Vatul’yan A.O., Rynkova A.A. Ob odnoj modeli izgibnyh kolebanij p’ezoelektricheskih bimorfov s razreznymi elektrodami i ee prilozheniyah [About one model of bending oscillations of piezoelectric bimorfs with split electrodes and its applications] // Izvestiya RAN. MTT. 2007. № 4. P. 114–122; https://doi.org/10.3103/S0025654407040127
- Patent RF № 2099754. Jelstaun Korporejshn N.V. Deformiruemoe zerkalo na osnove mnogoslojnoj aktivnoj bimorfnoj struktury [Deformable mirror based on a multilayer active bimorph structure]. Data zayavki: 17.10.1996. Data publikacii: 20.12.1997. 7 p.; URL: https://www.fips.ru/registers-doc-view/fips_servlet
- Antonyak YU.T., Vassergiser M.E. Raschet harakteristik izgibnogo p’ezoelektricheskogo preobrazovatelya membrannogo tipa [Calculation of the characteristics of a membrane-type bending piezoelectric transducer] // Akusticheskij zhurnal. 1982. V. 28. № 3. P. 294–302.
- Aronov B.S. Elektromekhanicheskie preobrazovateli iz p’ezoelektricheskoj keramiki [Electromechanical converters from piezoelectric ceramics]. Leningrad: Energoatomizdat, 1990. 270 p.
- Williams C.B., Yates R.B. Analysis of a microelectric generator for Microsystems // Sensors and Actuators A: Physical. 1996. V. 52. № 1–3. P. 8–11.
- Abbakumov K.E., Konovalov R.S., Caplev V.M. Eksperimental’noe issledovanie diskovogo bimorfnogo p’ezoelektricheskogo generatora [Experimental study of a disk bimorph piezoelectric generator] // Izvestiya SPbGETU “LETI”. 2014. № 9. P. 59–63.
- Liu H., Zhong J., Lee C., Lee S.-W., Lin L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications // Applied Physics Reviews. 2018. V. 5. № 4. P. 041306; https://doi.org/10.1063/1.5074184
- Vasil’ev V.A., Verem’yov V.A., Tihonov A.I. Vliyanie chastotnyh faktorov i parametrov na informativnyj signal p’ezoelektricheskih datchikov davleniya [Influence of frequency factors and parameters on the informative signal of piezoelectric pressure sensors] // Datchiki i sistemy. 2003. № 8. P. 5–9.
- SHarapov V.M., Musienko M.P., SHarapova E.V. P’ezoelektricheskie datchiki [Piezoelectric sensors]. Moscow: Tekhnosfera, 2006. 632 p.
- Mouhli M. Analysis and shape modeling of thin piezoelectric actuators. Virginia Commonwealth University Publ., 2005. 100 p.; URL: https://scholarscompass.vcu.edu/etd/1552
- Panich A.E. P’ezokeramicheskie aktyuatory [Piezoceramic actuators]. Rostov na Donu: izd-vo RGU, 2008. 159 p.
- Yamada H., Sasaki M., Nam Y. Active vibration control of a micro-actuator for hard disk drives using self-sensing actuator // J. Intel. Mat. Syst. Struct. 2008. V. 19. № 1. P. 113–123; https://doi.org/10.1177/1045389X07083693
- El-Sayed A.M., Abo-Ismail A., El-Melegy M.T. et al. Development of a micro-gripper using piezoelectric bimorphs // Sensors. 2013. V. 13. P. 5826–5840; https://doi.org/10.3390/s130505826
- Bardin V.A., Vasil’ev V.A., CHernov P.S. Sovremennoe sostoyanie i razrabotki aktyuatorov nano- i mikroperemeshchenij [The current state and development of actuators of nano- and micro-movements] / Trudy mezhdunarodnogo simpoziuma “Nadezhnost’ i kachestvo”. 2014. V. 2. P. 123–127.
- Bardin V.A., Vasil’ev V.A. Aktyuatory nano- i mikroperemeshchenij dlya sistem upravleniya, kontrolya i bezopasnosti [Actuators of nano- and micro-movements for control, control and safety systems] // Sovremennaya tekhnika i tekhnologii. 2014. № 2. P. 1–5; URL: https://technology.snauka.ru/2014/02/3057
- Zhou J., Dong L., Yang W. A Double-Acting Piezoelectric actuator for helicopter active rotor // Actuators. 2021. № 10 (247). P. 1–15; https:// doi.org/10.3390/act10100247
- Abedian B., Cundari M. Resonant frequency of a polyvinylidene flouride piezoelectric bimorph: the effect of surrounding fluid // Proceedings Smart Structures and Materials. 1993. V. 1916: Smart Materials. 23 July 1993; https://doi.org/10.1117/12.148486
- Patent RF № 2723567. Lopast’ vozdushnogo vinta s upravlyaemoj geometriej profilya [Propeller blade with controlled profile geometry] / Pan’kov A.A., Anoshkin A.N., Pisarev P.V. Data zayavki: 18.11.2019. Data publikacii: 16.06.2020. 5 p.; URL: https://www.fips.ru/registers-doc-view/fips_servlet
- Patent RU № 2636255. P’ezoaktyuator izgibnogo tipa [Bending type piezoactuator] / Pan’kov A.A. Data zayavki: 14.04.2016. Data publikacii: 21.11.2017. 8 p.; URL: https://www.fips.ru/registers-doc-view/fips_servlet
- Patent US 2003/0056351 A1. Piezoelectric Macro-Fiber Composite Actuator and Method for Making Same / Wilkie W.K., et al. Application Publ. March 27, 2003.
- Emad D, Fanni MA, Mohamed AM, Yoshida S. Low-Computational-Cost Technique for Modeling Macro Fiber Composite Piezoelectric Actuators Using Finite Element Method // Materials (Basel). 2021. № 14 (15). P. 4316.
- Park J.-S., Kim J.-H. Analytical development of single crystal Macro Fiber Composite actuators for active twist rotor blades // Smart Mater. Struct. 2005. № 14. P. 745–753; https://doi.org/10.1088/0964-1726/14/4/033
- Sertifikat RU № 2018666421. Komp’yuternaya programma “MFC PROPERTIES” (MFCP) [Computer program “MFC PROPERTIES” (MFCP)] / Pisarev P.V., Anoshkin A.N., Pan’kov A.A. opubl.: 17.12.2018. zayavka № 2018663978 ot 05.12.2018.
- Pan’kov A.A., Anoshkin A.N., Pisarev P.V., Bayandin S.R. Using an electromechanical analogy to describe the damping characteristics of an MFC actuator // IOP Conference Series: Materials Science and Engineering. 2021. V. 1093. P. 012023.
- Kashyap R., Lenka T. R., Baishya S. A model for doubly clamped piezoelectric energy harvesters with segmented electrodes // IEEE Electron device letters. 2015. V. 36. № 12. P. 1369–1372.
- Patent RU № 2778161. Sposob uvelicheniya p’ezochuvstvitel’nosti bimorfa izgibnogo tipa [Method for increasing piezosensitivity of bimorph of bending type] / Pan’kov A.A., opubl.: 15.08.2022 Byul. № 23, zayavka № 2022101875 ot 27.01.2022 g.; URL: https://www.fips.ru/registers-doc-view/fips_servlet
- Patent US № 5632841. Thin layer composite unimorph ferroelectric driver and sensor / Hellbaum R.F., Bryant R.G., Fox R.L. Application Date: 24.01.1997. Publication Date: 27.05.1997. 12 p.; URL: https://patents.google.com/patent/US20010043027/fi
- Patent RU № 2793564. P’ezoelektricheskij bimorf izgibnogo tipa [Bending type piezoelectric bimorph] / Pan’kov A.A., opubl.: 04.04.2023 Byul. № 10, zayavka № 2022129727 ot 16.11.2022 g.
- Patent RU № 2803015. P’ezoelektricheskij aktyuator [Piezoelectric actuator] / Pan’kov A.A., opubl.: 05.09.2023 Byul. № 25, zayavka № 2023109123 ot 11.04.2023 g.; URL: https://www.fips.ru/registers-doc-view/fips_servlet
- Pobedrya B.E. Mekhanika kompozicionnyh materialov [Mechanics of composite materials]. Moscow: Izd-vo Mosk. universiteta, 1984. 336 p.
- Pan’kov A.A. A piezoelectric material with inverse polarization and Maxwell-Wagner relaxation of layers in a variable electric field // Mechanics of Composite Materials. 2014. V. 49. P. 577–584; https://doi.org/10.1007/s11029-013-9374-y
- Shindo Y., Narita F., Hirama M. Electromechanical field concentrations near the electrode tip in partially poled multilayer piezo-film actuators // Smart Mater. Struct. 2009. V. 18. P. 085020; https://doi.org/10.1088/0964-1726/18/8/085020
- Skaliukh A.S., Soloviev A.N., Oganesyan P.A. Modeling of piezoelectric elements with inhomogeneous polarization in ACELAN // Ferroelectrics. 2015. V. 483. P. 95–101; https://doi.org/10.1080/00150193.2015.1059138
- Gerasimenko T.E., Kurbatova N.V., Nadolin D.K., Nasedkin A.V., Nasedkina A.A., Oganesyan P.A., Skaliukh A.S., Soloviev A.N. Homogenization of piezoelectric composites with internal structure and inhomogeneous polarization in ACELAN-COMPOS finite element package / Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials. Advanced Structured Materials. 2019. V. 109. P. 113–131; https://doi.org/10.1007/978-3-030-17470-5_8
- Dong X.-J., Meng G. Dynamic analysis of structures with piezoelectric actuators based on thermal analogy method // Int. J. Adv. Manufact. Technol. 2006. V. 27. P. 841–844; https://doi.org/10.1007/s00170-004-2290-5
Supplementary files
