Nanoindentation of AlGaN Films Formed on SiC/Si Substrates Grown by the Method of Coordinated Substitution of Atoms

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

 In this article, the mechanical and deformation characteristics of epitaxial films of AlGaN solid solutions formed on silicon substrates of crystallographic orientations (001), (011) and (111) with a silicon carbide (SiC/Si) buffer layer synthesized by the method of the coordinated substitution of atoms were studied using the nanoindentation method. The growth of AlGaN epitaxial layers were carried out both directly on the SiC/Si hybrid substrate and on the SiC/Si substrate additionally coated with an AlN buffer layer. The morphology and structure of the surface of the layers was studied by atomic force microscopy. The structural characteristics of hybrid AlGaN substrates and films grown with and without an aluminum nitride buffer layer were measured. An unambiguous relationship has been established between the mechanical properties (elasticity modulus and hardness) and the surface structure of AlGaN films. It has been found that the AlN buffer layer has a significant effect on the mechanical and deformation properties of AlGaN films at the initial moment of indentation, when the layer is predominantly elastically deformed. The roughness was determined and the surface morphology of the AlGaN films was characterized. For the first time, experimentally, using the nanoindentation method, the hardness parameters and the reduced modulus of elasticity of epitaxial AlGaN grown on hybrid SiC/Si and AlN/SiC/Si substrates were measured.

Sobre autores

A. Grashchenko

Institute for Problems in Mechanical Engineering, Russian Academy of Sciences

Email: asgrashchenko@bk.ru
St. Petersburg, 199178 Russia

S. Kukushkin

Institute for Problems in Mechanical Engineering, Russian Academy of Sciences

Email: sergey.a.kukushkin@gmail.com
St. Petersburg, 199178 Russia

A. Osipov

Institute for Problems in Mechanical Engineering, Russian Academy of Sciences

Email: sergey.a.kukushkin@gmail.com
St. Petersburg, 199178 Russia

Sh. Sharofidinov

Ioffe Institute

Autor responsável pela correspondência
Email: sergey.a.kukushkin@gmail.com
St. Petersburg, 194021 Russia

Bibliografia

  1. Kukushkin S.A., Osipov A.V. Nanoscale single-crystal silicon carbide on silicon and unique properties of this material // Inorganic Materials. 2021. V. 57. P. 1319–1329. https://doi.org/10.1134/S0020168521130021
  2. Кукушкин С.А., Осипов А.В. Эпитаксиальный карбид кремния на кремнии. Метод согласованного замещения атомов // Журнал общей химии. 2022. Т. 94. № 4. С. 547–577. https://doi.org/10.31857/S0044460X22040023
  3. Karpov S.Y., Podolskaya N.I., Zhmakin I.A., Zhmakin A.I. Statistical model of ternary group-III nitrides // Phys. Rev. B. 2004. V. 70. P. 235203. https://doi.org/10.1103/PhysRevB.70.235203
  4. Кукушкин С.А., Шарофидинов Ш.Ш., Осипов А.В., Гращенко А.С., Кандаков А.В., Осипова Е.В., Котляр К.П., Убыйвовк Е.В. Самоорганизация состава пленок AlxGa1 – xN, выращенных на гибридных подложках SiC/Si // ФТТ. 2021. № 3. С. 363–369.
  5. Шарофидинов Ш.Ш., Кукушкин С.А., Старицын М.В., Солнышкин А.В., Сергеева О.Н., Каптелов Е.Ю., Пронин И.П. Структура и свойства композитов на основе нитридов алюминия и галлия, выращенных на кремнии разной ориентации с буферным слоем карбида кремния // ФТТ. 2022. № 5. С. 522–527.
  6. Солнышкин А.В., Сергеева О.Н., Шустова О.А., Шарофидинов Ш.Ш., Старицын М.В., Каптелов Е.Ю., Кукушкин С.А., Пронин И.П. Диэлектрические и пироэлектрические свойства композитов на основе нитридов алюминия и галлия, выращенных методом хлорид-гибридной эпитаксии на подложке карбида кремния на кремнии // Письма в ЖТФ. 2021. № 9. С. 7–10. https://doi.org/10.21883/PJTF.2021.09.50898.18673
  7. Manandhar M.B., Matin M.A. Comparative modelling and thermal analysis of AlGaN/GaN power devices // J. Low Power Electron. Appl. 2021. V. 11 (3). P. 33. https://doi.org/10.3390/jlpea11030033
  8. Ben Amar A., Faucher M., Brandli V., Cordier Y., Théron D. Young’s modulus extraction of epitaxial heterostructure AlGaN/GaN for MEMS application // Phys. Status Solidi A. 2014. V. 211. № 7. P. 1–5. https://doi.org/10.1002/pssa.201330339
  9. Шарофидинов Ш.Ш., Кукушкин С.А., Редьков А.В., Гращенко А.С., Осипов А.В. Рост полупроводниковых III–V гетероструктур на подложках SiC/Si // Письма в ЖТФ. 2019. № 14. С. 24. https://doi.org/110.1134/S1063785019070277
  10. Кукушкин С.А., Шарофидинов Ш.Ш. Новый метод получения объемных кристаллов AlN, GaN и AlGaN с использованием гибридных подложек SiC/Si // ФТТ. 2019. № 12. С. 2338–2343.
  11. Гращенко А.С., Кукушкин С.А., Николаев В.И., Осипов А.В., Осипова Е.В., Сошников И.П. Исследование анизотропных упругопластических свойств пленок β-Ga2O3, синтезированных на подложках SiC/Si // ФТТ. 2018. № 5. С. 851–856.
  12. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // Journal of Materials Research. 1992. V. 7. P. 1564–1583. https://doi.org/10.1557/JMR.1992.1564
  13. Hertz H. On the contact of elastic solids // Z. Reine Angew. Math. 1881. V. 92. P. 156–171.
  14. Kukushkin S.A., Osipov A.V., Soshnikov I.P. Growth of epitaxial SiC layer on Si (100) surface of n- and p-type of conductivity by the atoms substitution method // Rev. Adv. Mater. Sci. 2017. V. 52. P. 29–42.
  15. Bessolov V.N., Konenkova E.V., Kukushkin S.A., Osipov A.V., Rodin S.N. Semipolar gallium nitride on silicon: technology and properties // Rev. Adv. Mater. Sci. 2014. V. 38. P. 75–93.
  16. Koryakin A.A., Kukushkin S.A., Osipov A.V., Sharofidinov S.S., Shcheglov M.P. Growth mechanism of semipolar AlN layers by HVPE on hybrid SiC/Si(110) substrates // Materials. 2022. V. 15 (18). P. 6202. https://doi.org/10.3390/ma15186202
  17. Корякин А.А., Кукушкин С.А., Осипов А.В., Шарофидинов Ш.Ш., Щеглов М.П. Новый метод релаксации упругих напряжений при росте гетероэпитаксиальных пленок // Изв. РАН. МТТ. 2023 (в печати).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (51KB)
3.

Baixar (40KB)
4.

Baixar (43KB)
5.

Baixar (31KB)
6.

Baixar (30KB)
7.

Baixar (30KB)
8.

Baixar (31KB)

Declaração de direitos autorais © А.С. Гращенко, С.А. Кукушкин, А.В. Осипов, Ш.Ш. Шарофидинов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies